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A rigorous theory of dispersion in both granular and sintered spatially-periodic porous
media is presented, utilizing concepts originating from Brownian motion theory. A
precise prescription is derived for calculating both the Darcy-scale interstitial velocity
vector 7* and dispersivity dyadic D * of a tracer particle. These are expressed in terms
of the local fluid velocity vector field v at each point within the interstices of a unit cell

of the spatially periodic array and, for the dispersivity, the molecular diffusivity D of |

the tracer particle through the fluid.

Though the theory is complete, numerical results are not yet available owing to the
complex structure of the local interstitial velocity field . However, as an illustrative
exercise, the theory is shown to correctly reduce in an appropriate limiting case to the
well-known Taylor-Aris results for dispersion in circular capillaries.

NOMENCLATURE

scalar component of vector B field

vector field representing the solution of equation (5.6)
non-convective vector B field

constant vector representing the mean value of the B field
local solute concentration

mean or Darcy-scale solute concentration

drag coefficient

dimensionless longitudinal dispersion coefficient = Dy, /ol
dimensionless transverse dispersion coeflicient = D/l
‘concentration’ vector

sphere diameter

molecular diffusivity of tracer

longitudinal dispersivity component

transverse dispersivity component

D/D¢ material derivative
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D*, D¥ dispersion dyadic or tensor

Exp denotes terms of exponentially small order in time as o0
J(R) local tensor field

f(R) Darcy-scale tensor field

F force on a sphere
F arbitrary local tensor field
G constant Darcy-scale tensor representing a macroscopic gradient
4 H arbitrary spatially periodic tensor field
<[ J‘ I dyadic idemfactor
— j solute flux vector for diffusive transport
;5 e J flux vector of probability density
olm l characteristic linear length scale of a unit cell
4 5 I basic lattice vector (j = 1, 2, 3)
=0 L lattice point
E 9) m number of solute molecules in a unit cell
o M, mth total m-adic moment
5% n; integer taking on any positive or negative value, including zero (j = 1, 2, 3)
E; {n} refers to the ‘coordinates’ of the nth cell = {ny, n,, ny}
83 5 N number of solute molecules in the entire porous medium
9‘2 0 origin of a local coordinate system within a unit cell
TS 0] origin of a global coordinate system defined on the whole porous medium
= {0} refers to centre of ‘zero’ unit cell
y/ pressure field '
P point lying on the face 5; of a unit cell (j = + 1, £2, +3)
Pe Péclet number = 9l/D

P(R,t|R’) or P(R,,r,t|R,,1") probability density for the instantaneous position of a Brownian
tracer particle
q; volumetric flow rate of fluid or solute transport rate through face s; of a unit cell
dg, differential volumetric flow rate through a directed surface element possessing a unit
normal vector v
dg; Darcy-scale differential volumetric flow rate = g;
> | (r,¢,z) circular cylindrical coordinates

~N 7o capillary tube radius
local position vector within a unit cell

—

< o .

P r initial local position vector of tracer corpuscle

® : f unit radial vector in circular cylindrical coordinates
= dsr differential volume element within a unit cell

E 8 Re Reynolds number

~ R global position vector in the porous medium

- R’ initial global position vector of tracer corpuscle

§% R Darcy-scale position vector or centroid of a unit cell
== R, position vector of a lattice point

82 5 d3R differential global volume element

9(2 dR displacement vector between two adjacent lattice points
EE d3R superficial volume of a unit cell

I11-2
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mean displacement vector of a Brownian corpuscle from its initial position
faceof aunitcell (j = +1, +2, +3)

wetted particle surface within a unit cell

directed area of face s; of a unit cell

scalar element of surface area

directed vector element of surface area = vds

Darcy-scale differential directed surface element = $;
directed vector areal element possessing a unit normal v
time

tensor-valued field possessing a spatially-periodic gradient
stream velocity

mean velocity vector of tracer corpuscle

local Poiseuille velocity at a point in a capillary tube

local interstitial fluid velocity vector

Darcy-scale seepage velocity vector

mean interstitial fluid velocity vector

magnitude of vector 7 *

mean Poiseuille velocity

fluid volume within the entire porous medium
eigenfunction

unit vector parallel to tube axis

3 x 3 matrix with integer elements

Dirac delta function

Kronecker delta

Kronecker delta for the pair of cells {n} and {n'}

porosity of porous medium = 7¢/7,

angle between the basic lattice vectors I; and /,, or the angle between the basic lattice
vector I, and the direction of mean flow

eigenvalues

constant unit vector pointing in the direction of the mean flow
mth local m-adic moment

kinematic viscosity

fluid density

superficial volume of a unit cell

fluid domain within a unit cell

particle domain within a unit cell

external boundary of a unit cell, composed of its six faces
unit normal vector to a surface

arbitrary constant vector

gradient operator

Darcy-scale gradient operator

difference between the values of a function at equivalent points on opposite faces of
a unit cell

integral over a closed surface bounding the fluid domain 7¢
transposition operator
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Marks over symbols
— mean value or Darcy-scale function
v denotes a spatially periodic function
A denotes a unit vector

1. INTRODUCTION

This contribution is devoted to the kinematics of flow and dispersion in porous media whose
geometric structure is spatially periodic. Dispersion theory is concerned with the asymptotic
time-dependent, spatial distribution of a passive tracer corpuscle introduced into a fluid flowing
through the interstices of a porous medium under the influence of an externally applied pressure
gradient. The primary aim of such theories is to predict the mean velocity with which the tracer
moves,t and the dispersion about this mean, in terms of the fundamental physical parameters
characterizing the transport system. These include the molecular diffusivity D of the tracer, the
Darcy-scale seepage velocity vector @ of the flowing fluid, the kinematical and rheological
properties of the fluid, and the geometry of the porous medium ~ especially its porosity € and
characteristic interstitial length scale . Typically, the latter may be taken to be the mean particle
size for unconsolidated or granular porous media, or the mean pore size for consolidated or
capillary media.

Our approach to this subject will be modelled after the pioneering work of G. I. Taylor (1953,
19544, b) on dispersion in cylindrical capillaries, by using the moment-analysis techniques
introduced by Aris (1956), as subsequently extended and embedded in a much broader context
by Horn (1971). Extensive reviews of the current state-of-the-art of dispersion theories are
available (Bear 1969, 1972, Fried & Combarnous 1971, Whitaker 1966, 1967, 1969, 1971, 1973),
including critical analyses of pertinent experimental data (de Ligny 1970, Edwards & Richardson
1968, Gunn 1969, Gunn & De Souza 1974, Gunn & England 1971, Gunn & Khalid 1975, Gunn
& Pryce 1969, Urban & Gomezplata 1969, Vortmayer 1975, Votruba et al. 1972).

Since porous media are often modelled geometrically by so-called capillary models of the
interstitial space, it might be expected that the Taylor-Aris theory would play an important
quantitative role in rationalizing and correlating experimental observations of dispersion
phenomena in porous media. Surprisingly, such is not the case. Rather, most theories (Aris &
Amundson 1957, Bear 1969, 1972, Beran 1968, de Jong 1958, 1972, Saffman 19594, b, 1960,
Scheidegger 1963, Simpson 1969) of dispersion in such media tend to be of a much less rigorous
nature, beginning as they generally do with a priori, ad hoc, random-walk or mixing-cell assump-
tions applied to a tracer particle, rather than with the fundamental convective-diffusion equation
applied locally at each point within the interstitial fluid (Fried & Combarnous 1971, Gunn
1969, Rumer 1972, Whitaker 1966, 1967, 1969, 1971, 1973).

Apart from the complex interstitial geometrical characteristics of porous media, perhaps the
major obstacle impeding application of the Taylor-Aris theory to such media lies in the fact
that their mode of analysis is apparently restricted to fluid motions that are locally unidirectional;
that is, where the local fluid velocity vector v is everywhere parallel to the mean fluid velocity
vector B, as it is for the case of Poiseuille flow in a capillary tube. This condition does not obtain
for flow through porous media, where the streamlines around the individual particles are

+ In ordinary circumstances the mean velocity of the tracer is identical to that of the fluid. However, situations
exist (Brenner & Gaydos 1977) for which this is not true.
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curvilinear rather than rectilinear, and therefore not generally locally parallel at each inter-
stitial point to the Darcy-scale seepage velocity vector .

A rigorous theory, on a par with that of Taylor-Aris, is herein presented for dispersion in
spatially-periodic porous media. The conceptual basis for the subsequent analysis of such ordered
arrays is implicit in Horn’s (1971) general analysis of dispersion processes. Time and space
constraints permit only a summary outline of the essential ideas. Detailed proofs, and generaliza-
tions to more complex dispersion phenomena in such media, including comparable dynamical
studies, are available in a forthcoming monograph (Brenner 1981). Numerical results must
await the detailed solutions of the boundary-value problems posed by the present theory,
though some comments are offered at the conclusion of this paper on the anticipated structure
of the results.

It is to be hoped that the results deduced here for the ordered model will find also application
in practical situations involving disordered media. The latter are more frequently encountered
in nature and industry than are ordered porous media.

Too often (Bear 1972, Beran 1968, Hashin 1970, Scheidegger 1963) so-called ‘random’ or
‘statistical” mathematical models of such disordered media are regarded as being synonomous
with the physical media themselves, merely because the latter appear to possess a complex
geometric structure. This apparent confusion between complexity and randomness is unfortunate
since to the best of my knowledge there exists no compelling empirical evidence that real porous
media, or ensembles thereof, are random in structure. Indeed, most practitioners would be hard
pressed to devise an unequivocal experimental test of randomness.

It is in this spirit of unbiased scientific inquiry that the concept of a perfectly ordered medium
is advanced as representing one extreme mathematical model of a porous medium. Random
models of perfectly disordered media lie at the opposite extreme. Which model, if either, best
captures the essence of a given physical medium or ensemble can generally be rationally decided
only by experimental observation and investigation, and not by any a priori appeal based upon
the visual appearance of ‘randomness’ (complexity). Indeed, since examples of highly ordered
porous media are found in nature, or are artificially created for specialized industrial or labor-
atory purposes, our model will clearly possess an a priori applicability to such systems. On the
other hand, an equally casual inspection of a disordered medium could never logically lead one
to the a priori conclusion that the medium was random. At best one may observe a priori that a
porous medium is, or is not, spatially periodic. But this is not the same as saying that the system
is random, nor even that a spatially periodic model will result in grossly erroneous predictions
of transport properties in disordered systems. Thus, it may well be that our ordered model
possesses practical utility even in circumstances where the porous medium to which the model
is applied lacks any obvious geometrical order. Only experimental investigations can delineate
bounds (or lack thereof) on the ability of the model to describe disordered systems.

2. GEOMETRICAL CHARACTERISTICS OF SPATIALLY PERIODIC POROUS MEDIA
Lattice geometry
Consider a three-dimensional granular (i.e. unconsolidated) porous medium, composed of a
repetitive arrangement of rigid particles of any shape(s), extending indefinitely in every direction

(figure 1). Such an array will be termed spatially periodic. The particles themselves need not
possess any geometric symmetry elements. Though the particles in figure 1 are depicted, for
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SPATIALLY PERIODIC POROUS MEDIA 87

simplicity, as not being in physical contact with each other, mechanical stability demands that
the particles be in mutual contact, as in figure 2.

Attention will be focused on unconsolidated media, where the particulate solid phase is
discontinuous. However, by means of an appropriate limiting process (Brenner 1981), typified
by that suggested in figure 3 (with ;> 0), the results of the present analysis may also be applied
to consolidated (capillary) media, where the solid phase is continuous, rather than discrete.

lattlce points
) / particles

t,,’/,

/
'I/
'I/ ’l/.

l
‘I

A /
/I I Y l
0///,"///,"'///'""//,'!1.

7 il
’// 'I/ ”/ it
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""""" R \:\\\\::\\\X\\::‘:\‘:\Q G
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FiGure 1. A two-dimensional spatially-periodic particle array. The spatially periodic character of the array is
represented by the translational symmetry of the lattice points. The pair of planar basic vectors (I, l,) drawn
between ‘adjacent’ lattice points forms a ‘unit cell” in the shape of a parallelogram. Other choices, such as
(I, 1), also qualify as a set of basic lattice vectors. These form a differently shaped unit cell, as shown.
However, the magnitudes, |I; x I,| and |I] x I7|, of the superficial unit cell areas are identical, as too are the
respective particle and interstitial areas.

As is well known (Brillouin 1953, Hilton 1963, Sachs 1963), the principal geometric charac-
teristic of a repetitive array is the existence of a group of translational symmetry operations, by
means of which the repeating pattern may be brought into self coincidence. The translational
symmetry of the array, expressing its invariance with respect to parallel displacements by
definite amounts in definite directions, is represented geometrically by a three-dimensional
lattice. This lattice consists of an infinite array of evenly spaced points (figure 1), such that the
arrangement of particles appears the same, and in the same orientation, when viewed from each
and every one of the lattice points.

The location R, (figure 2) of each lattice point may be represented by one of the infinite

set of position vectors,
Rn = n111+ﬂ212+n3l3, (2.1)

with nj=0,+1,+2 +3,... (j=1,2,3), (2.2)

wherein (I}, ,, I;) constitute a set of three non-coplanar vectors, termed basic lattice vectors.
For a specified lattice, the set of basic lattice vectors is not unique. Rather, there exist infinitely
many sets consistent with the specified translational symmetry of the lattice. The necessary and
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sufficient conditions that (I3, I3, I;) (figure 1) constitute an alternative set of basic lattice vectors
is that
3
l,: = 2 a’ijl' (1, = 1, 2, 3), (23)

wherein the nine scalar elements of the 3 x 3 & matrix are any positive or negative integers,

including zero, such that
deta = +1. (2.4)

curvilinear unit cell
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Ficure 2. A two-dimensional spatially periodic array of particles in mutual physical contact. In general, it is
not possible to construct a parallelogram-shaped unit cell whose boundaries do not pass through the interior(s)
of the particle(s). A possible curvilinear unit cell is shown, possessing the property that its external bound-
aries do not pass through the particle interior(s). Given a fixed origin O at any one of the lattice points, .
the location of every other lattice point can be specified by means of the position vector R,,.

circular
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Ficure 3. Formation of a spatially-periodic consolidated medium from a spatially periodic unconsolidated medium.
By allowing the distances ¢,, €, and ¢; to tend to zero, the granular medium passes over to a system of parallel,
circular cylindrical capillary tubes, arranged in a rectangular lattice. The solid phase is then continuous.
Though the system of horizontal capillary tubes are disconnected from one another, they can be connected
together by drilling circular vertical holes. In such circumstances, both the particulate and fluid phases
(filling the interstices) will each be separately continuous.
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Parallelepipedal unit cells

The parallelepiped whose edges are formed from a set (I, I, I;) of basic lattice vectors con-
stitutes a (primitive) unit cell of the lattice. The entire spatially periodic array may then be
represented by such a set of identical parallelepipeds, regularly packed. Each cell in the array
will contain one or more particles (figure 1). No restrictions exist as to the number, size, shape,
orientation, or relative arrangement of particles within any one cell. However, the contents of
each cell are an exact replica of these of every other cell.

interstitial
fluid volume,7;

L \ superficial unit
cell volume, 7,
bounded externally
by the six cell

faces, 27,
face s 4 :

wetted particle surface(s), s,;
particle volume(s}, 7,

Ficure 4. Unit cell of a spatially periodic array. The unit cell is a parallelepiped formed from the set of basic
lattice vectors (I, Iy, I;). The directed areal vectors (s, $,, S5) are normal to the respective faces, pointing
out of the cell, and are equal in magnitude to the areas of the respective faces.

As in figure 4, the superficial region of space occupied by a unit cell will be denoted by 7,.
This same symbol will be utilized to represent the magnitude, 7, = I, I, x L, of the superficial
unit cell volume. The external cell boundary 97, consists of the six cell faces, s;; (f = 1, 2, 3).
Thus, taken in pairs,

3
o= X 5-®sye (2.5)
1=

The symbols 7; and 7, respectively, will be used to denote the fluid and particle domains within
aunitcell. Thus, 7, = 7,@,, or in terms of the magnitudes of the respective volumes, 7, = 7y + 7.

The porosity,
€= Tt/Ty, (2.6)

of the unit cell is identical to that of porous medium as a whole. The (wetted) particle surface(s)
within a unit cell are designated by the symbol s,. This surface bounds the particle domain 7,
externally. Consequently, the fluid domain 7, is bounded externally by 97, and internally by s;,.

12 Vol. 2g7. A
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For a specified decomposition of the porous medium into unit cells, the location of the nth
cell in the array may be specified generically either by the position vector R, or, equivalently,
by the triplet of integers,

’ s (g} = (), say. (2.7)
The affix {n} may be used as an argument to distinguish, where required, between comparable
domains of different unit cells. Thus, for example, 74{n} denotes the interstitial fluid domain
within cell {n}. Hence, if I, represents the fluid domain for the entire porous medium,

Vo = Z74{n}, (2.8)
in which Y= 3 3 ¥ . (2.9)

As a consequence of the non-uniqueness of the basic lattice vectors, the spatial configuration
of a unit cell is not unique for a specified lattice. Each of the infinitely many possible differently-
shaped parallelepipedal unit cells, corresponding to the infinite multiplicity of choices for
(L, Iy, Ly), is characterized by different edge lengths, |I;| (¢ = 1,2, 3), and angles, 6; = arccos
(L LG L)) (ag, k = cycl.), between adjacent cell faces, as in figure 1. However, both the
fluid and particle contents, 7; and 7, are invariant to the choice made, as too is the superficial
volume 7, = I+, x Iy = I{- I} x I3 in consequence of equation (2.3) (Brenner 1981). The same is
true of the porosity ¢ (Brenner 1981).

cell {n'}

\

local origin

——

)/
/(

Ncell {0}

\ . -
global origin

Ficure 5. Global and local position vectors. O represents a fixed lattice point from which the global position
vector R is drawn. This is also the origin from which the locations R,, of all other lattice points are measured.
In the sketch, R” = R, + r and R” = R; + r, in which R’ and R” are points lying within cells {n’} and {n"},
respectively. The local position r is the same in both cells. For variety’s sake, the lattice points have been
shown as lying within the interiors of the unit cells, rather than at their vertices. This reflects the fact that
the lattice points may all be displaced by the same (arbitrary) amount, and yet still qualify as lattice points,
since the ‘new’ lattice possesses the same translational symmetry.elements as does the original’.
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Elementary metrical properties

For a specified external cell shape 07, let r (figure 5) denote the local position vector of any
interstitial point within the nth cell, relative to an arbitrary local origin ‘o’ within that cell.
The (global) position vector R of that interstitial fluid point, relative to a globally-fixed origin
O lying in any one of the cells (the ‘zeroth’ cell, {n} = {0}), may then be represented as

R=R, +r, (2.10)
with Rer{n} and rer,.

For convenience, O and 0 may be regarded as ‘ equivalent’ points with respect to their positions
relative to the lattice.

The “directed areas’ of the rectangular faces s; (j = £ 1, £2, +3) of a parallelepipedal unit
cell can be represented by the set of areal vectors (4, §,, §3) (figure 4),

s;=1lyxly, sy=1Il;xl, s;3=1xl, (2.11)

along with s_; = — s, ;. The magnitudes of these areal vectors correspond to the planar surface

)
areas of the faces, whereas their directions lie parallel to the outward drawn normals to 7, on 07,
Since 7, = I;-1, x I3, it readily follows that the vectors I, are reciprocal to the s;, in the sense that

(2.12)
with §;; the Kronecker delta.

ds

Ao lattice
L, points
J

F1cure 6. Curvilinear unit cell.

Curvilinear unit cells (figure 2)

It will prove convenient in subsequent calculations to use unit cells 7, whose external bound-
aries O, consist entirely of interstitial fluid points (except possibly for a set of points of zero
measure, such as might arise from point contacts between particles in adjacent cells). This may
be done by generally employing curvilinear unit cells, as in figure 6. Each such cell may be imagined
to derive from the parallelepipedal unit cell with which it shares the same lattice points by
congruously deforming each of the opposite pairs of parallelepipedal cell faces in such a manner
that the external boundary 0r,, of the deformed cell does not pass through any particle interior.

Congruency is defined as follows: let L_; and L,; be a pair of adjacent lattice points, as in
figure 6, such that{L_;—~L,;} = L. Let P_; and P, ; be equivalent points on the opposite cell faces,

12-2
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s_; and s, respectively. By ¢ equivalent’ is explicitly meant equality of the vectors {L_;—P_;}
={L,;—P,;}. Opposing pairs of cell faces are then congruent if, for each and every pair of
equivalent points (P_;, P,;), the following vector equality holds:

{P_;—P.} =1, (2.13)

with I; the appropriate basic lattice vector.

Such curvilinear unit cells do not possess a unique shape for two reasons: (i) the parallelepipedal
unit cell from which it derives is not unique; (ii) even for a prescribed parallelepipedal cell shape
(i.e. fixed values of (13, I,, 1;)), there exist an infinite variety of ways in which the external curvi-
linear cell boundaries 07, may be drawn so as to lie entirely in the fluid (see, for example, figure
9). Despite the variety of possible curvilinear cell shapes, all possess certain common features.
In particular, the fluid and particle contents, 7; and 7,, of each such cell are identical to that of
the parallelepipedal cell from which it derives by deformation, as is the superficial volume 7,
too (Brenner 1981). The same is true of the porosity €.

Define the directed (projected) area of a curvilinear face s; via the relation

s; Ef ds, (2.14)

with ds a differential element of directed area on the curvilinear face s; (figure 6), parallel to the
local outer normal to the volume 7,. As shown in the next paragraph, the vector area s, is
identical in both magnitude and direction to the corresponding planar directed area I;x I,
(2,7, kcycl.) defined in equation (2.11). Hence, when making reference to the directed area of a
cell face, no distinction need be drawn between the curvilinear and planar faces sharing the
same four lattice points.

[That the curvilinear and planar cell faces, §; and §;, respectively, sharing the same four lattice
points, possess the same directed areas may be demonstrated as follows: For any closed surface S,

ffds=0.
S

In combination, the pair of open surfaces §; and §; constitute a closed surface. Choose S = §;®5;

o J 7
to obtain
f ds =f ds,
5 8

upon making an appropriate change in the direction of ds on s;. By definition, on §;, ds = vds
where v is a constant unit normal vector on the plane independent of position on the face. Thus,

f_ds=vf“ds=v§j=sj,
35 35

from which equation (2.14) now follows. Q.E.D.]

In view of the existence of the infinitely dense set of allowable basic lattice vectors, it follows
from equation (2.11) that the set of directed curvilinear areas s; is also infinitely dense. In
particular, given any arbitrarily specified direction v in space (with v a unit vector parallel to
the given direction), it is always possible (Brenner 1981) to find a unit cell one of whose faces
possesses an orientation v; = §,/| ;| which is arbitrarily close to the specified orientation v.
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3. KINEMATICS OF FLOW

Let v = v(R) denote the local fluid velocity vector at any point R in the interstices. Consider
a situation involving the steady laminar flow of an incompressible fluid,

V-v =0, (3.1)

through the interstices of a spatially-periodic porous medium composed of particles which are
impervious to the passage of fluid through their surfaces:

vvo=0 on s (3.2)

P

with v a unit normal vector on the particle surface(s). In particular, suppose that the mean flow
velocity vector, defined as

1
7

= f o(R) &R, (3.3)
7i{n}
is constant throughout the entire porous medium; that is, it is independent of {n}. As discussed
in § 7, and in more detail elsewhere (Brenner 1981), the quantity ¥ thus defined represents the
Darcy-scale seepage velocity vector. The value of the integral (3.3) which defines ¥ will be
shown to be independent of the particular mode adopted for partitioning the space into unit
cells; that is, it possesses the same value for all possible choices of parallelepipedal or curvilinear
unit cells 7, consistent with the prescribed lattice.

The constancy of @ throughout the entire porous medium implies that the ‘macroscopic’ or
Darcy-scale flow is rectilinear or unidirectional. This contrasts with the local or ‘microscopic’
flow v, which is curvilinear. The constancy of the mean flow, coupled with the spatially periodic
geometry of the porous medium, leads to the conclusion (Brenner 1981) that the local velocity
field is itself spatially periodic, possessing the same periodicity R,, as the array. Explicitly,

v(R) =v(R+R,). (3.4)
Equivalently, it may be concluded from equation (2.10) that
v =o(r). (3.5)

In other words, the microscopic velocity field possesses the same value at equivalent points in
every cell. This velocity is therefore of a local (r), rather than global (R), nature.

The analysis that follows does not require that the Reynolds number of the flow be small,
nor even that the interstitial fluid be Newtonian as regards its rheological properties. Moreover,
the direction of the prescribed mean rectilinear flow ¥ may possess any orientation relative to the
‘crystallographic’ axes of the lattice.

In the special case of a Newtonian fluid flowing at small (but not necessarily zero) Reynolds
number, it can be shown (Brenner 1981) that the boundary-value problem posed by the Navier—
Stokes and continuity equations, coupled with the condition (3.4) of spatial periodicity, and
subject to the no-slip boundary condition» = 0 on s, leads to a unigue solution for any prescribed
constant seepage velocity vector ¥ defined by equation (3.3). Thus, for a specified spatially
periodic geometry, o(R) is uniquely determined at each point by @. (The corresponding local
pressure field p(R) is uniquely determined only to within an arbitrary additive constant, whose
value is physically irrelevant for the incompressible fluids under consideration.)
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4. CONVECTIVE-DIFFUSIVE PHENOMENA
Probability density for the stochastic “ trajectory’ of a tracer particle

Suppose that at time ¢ = 0 a tracer corpuscle is instantaneously and passively introduced
into the flowing fluid at some arbitrary interstitial position R’. It is convenient to imagine that
this tracer corpuscle consists of a single, neutrally buoyant, spherical Brownian particle (Brenner
& Gaydos 1977) or ‘solute molecule’, having the effective dimensions of a point compared with
the characteristic cell or pore size /. In general, such a particle will be convected, piggy-back
fashion, by the interstitial fluid at a velocity »(R), where R denotes the instantaneous position
occupied by the Brownian particle. Simultaneously, as a consequence of its Brownian movement,
this tracer molecule will undergo translational diffusion relative to the surrounding fluid, the
intensity of which is described by the molecular diffusivity D of the solute molecule through
the solvent fluid.

The instantaneous position R = R(¢|R’) of the Brownian particle is a stochastic variable.

Let (Brenner & Gaydos 1977) P = P(R,{|R") (4.1)

denote the probability density that the Brownian particle is situated at position R at time ¢,
given that it was located at the point R’ at time ¢ = 0. The quantity Pd®R, with volume element
d®R, thus represents the probability of finding the tracer particle at time ¢ lying somewhere
within the infinitesimal volume d®R centred at R.

Upon supposing that the particles comprising the porous medium are impermeable to the
solute molecule, for ¢ > 0 the Brownian particle must lie somewhere within the interstitial fluid
volume V;,,. Thus, P necessarily satisfies the normalization condition

Pd3R =1, (4.2)
Viw
for ¢ > 0. In addition, P = 0 for ¢ < 0. It will be assumed that
P—->0 as |R—R'|—>w (4.3)

at a sufficiently rapid rate with distance to insure convergence of the integral (4.2).
Conservation and continuity of probability density requires that P satisfy the ‘continuity’
equation (Brenner & Gaydos 1977),

OP/ot+V-J = 8(R—R') 8(t), (4.4)

at each interstitial point R€V,,. Here, J is the flux vector density of probability (relative to an
observer fixed in the porous medium), V = 0/0R is the gradient operator, and ¢ is the Dirac
delta function. The instantaneous ‘source’ term appearing on the right-hand side expresses the
fact that the tracer particle was introduced into the fluid at position R = R’ at ¢ = 0. That the
coeflicient of this source term is unity is demanded by the normalization condition (4.2) (Brenner
& Gaydos 1977).
The flux J consists of a convective contribution arising from the piggy-back transport, and

diffusive contribution given by Fick’s law. Thus,

J=vP-DVP. (4.5)
Impenetrability of the bed granules to solute transport through their surfaces requires that

v-J=0 on s, (4.6)
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Equivalently, in view of equations (3.2) and (4.5),
v'VP =0 on s, (4.7)
Equations (4.4) and (4.5) combing to yield the convective—diffusion equation,
0P/0t = —V-(vP)+DV2P+8(R—R')8(¢). (4.8)

For a given v, this equation governs the temporal evolution of the probability density P. Subject
to boundary conditions (4.3) and (4.7) this equation can be shown (Brenner & Gaydos 1977)
to possess a unique solution P.

In view of equation (2.10), P may be regarded as being of the functionally dependent form

P=P(R,,1tR,,1), (4.9)

rather than equation (4.1). Apropos of this, equation (2.8) may be employed to express the
normalization condition (4.2) in the alternative form

zf Pdér =1, (4.10)
nJ g
with d3r a volume element within a unit cell. Similarly, since |r—#'| = O([), condition (4.3)
may be written alternatively as

P->0 as |R,—R;|—>co. (4.11)

Upon adopting this cellular, rather than global, viewpoint, equation (4.8) becomes, for a
Sixed cell {n},
O0P/ot = —V-[v(r) P+ DV2P+34,, 0(r—1") 6(t), (4.12)
in which V = 0/0r is a local gradient operator, and
O = Oy g 0,

nang
with d;; the Kronecker delta. Thus, the tracer is regarded as having been initially located (at
t = 0) at the local point " within cell {n'}.

As follows from the differential equation and boundary conditions satisfied by P, the latter
is necessarily functionally dependent only upon the difference R, — R, rather upon R, and
R, separately. Hence, equation (4.9) may be replaced by

P=PR,—R;, rtr). (4.13)

For specified values of the initial location {n'} and r’ of the tracer, the differential equation
(4.12) is to be solved for P as a function of the local coordinate r for each and every different cell
{n}. The infinite sequence of such local differential equations for each {n} is to be regarded as
joined together by appropriate continuity requirements imposed upon P and J (or, equivalently,
VP) across the faces of adjacent cells. These are derived in the following paragraph.

As in figure 7, let {n*} and {n} be two adjacent cells, whose common boundary corresponds
to the curvilinear face s;. Let R denote the global position vector of any point P; lying upon s;.
This point may be parame\terized by either of the pair of coordinates (R}, r*) or (R,, r); that is,
as in equation (2.10),

)

nini n3nss

R=R}+r*=R, +r1, (4.14)

with (figure 7) R,—R} =1, (4.15)
Continuity of P across s; requires that

P(R%,r*) = P(R,, 1) (4.16)
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upon suppressing the fixed arguments, R,, ', and £, common to both sides. This relation may

be written alternatively as
P(R;kn r+ lj) = P(R'm r)‘ (417>

Similarly, one may consider the continuity of the flux J across the common boundary. In view
of equations (4.5), (4.16), and the continuity of v across the cell boundary, which is guaranteed
by its spatial periodicity, it proves sufficient to require that

VP(R%,r+1) = VP(R,, 1), (4.18)
with V = 0/0r. This is the analogue of equation (4.17).

e +
lattice points

Ficure 7. Two adjacent unit cells sharing a common face, s;. The global ‘coordinates’ of the two cells are res-
pectively, {n} = {n;, n;, i} and {n*} = {n;, n;— 1, n;} with 4, , k£ a cyclic permutation of the integers 1, 2, 3.

Local moments

Define the mth local moment of the distribution P within a unit cell as the sum,

(1, 1) = 3 (R, — RL)™P(R, — R, 1, t|r")  (m=0,1,2,...). (4.19)

Generically, for any vector V, V™ is the m-adic,
Vm=VV..VV (m-times), (4.20)

consisting of m successive vectors without any operational symbol between them. Thus, the fields
Hos My, s, ---, aTE, TEspectively, scalar, vector, dyadic, ..., fields.

The summation operator (2.9), which is global in character, commutes with all r-space opera-
tions in equation (4.12), since the latter are local in character. Hence, the moments p,, satisfy
the differential equations

Qp, Ot = —V-(op,) + D V2, + 8, 8(r 1) 8(t) (m=0,1,2,...), (4.21)
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with V = 9/0r. For similar reasons, from equation (4.7), these fields satisfy the boundary con-

ditions v-Vau,=0 on s, (4.22)

In addition to the latter, the local moments also satisfy certain boundary conditions on the
cell faces 0r,. These may be deduced from the global continuity conditions (4.17) and (4.18)
as follows: the affix n appearing in the summation operator (2.9) is a dummy index; hence,

S=3, (4.23)

n¥ n

since the sum extends over all the infinitely many cells in the array. Application of this operator
to the equality (4.17) thus yields

ZP(R% r+lj) = EP(RIL’ 1‘)-
nk n
From equation (4.19) this is equivalent to

Ho(r +1;) —po(r) = 0, (4.24)
upon suppressing the fixed arguments ¢ and r’ on both sides. Similarly, multiply both sides of

equation (4.17) by R} = R, —I; and sum over all cells to obtain

ZR;’:P(R% r+lj) = ERnP(Rm r)—leP(Rn’ 1').

nk

This is equivalent to the relation g (r+1;) = py(r) — L po(r).

In alternative form, w(r+1) —p(r) = (r+ 1) po(r+ 1) —rpy(r), (4.25)
obtained by adding and subtracting the term rx, to and from the preceding equation, and using

equation (4.24). In a similar manner, multiply equation (4.17) by (R%)? = (R, —;)?, and sum

to obtai
o obtain Bo(r+ 1) = po(r) —[L; py(r) + py (1) L]+ po(7) L 1.

With the use of equations (4.24) and (4.25) this may eventually be written as
_ mr+l) m(r+l)  p(r) p(r)
o(r +1;) Ho(T)

As in figure 8, let P_; and P,; be equivalent points (in the sense of equation (2.13)) lying on
opposite faces s_; and s,; of cell {n}. Within cell {n} the local coordinates of P_; and P, are,
respectively, r and r+ ;. Let F be any tensor-valued field, which is either global or local with
respect to its functional dependence upon position; that is, either F = F(R) or F(r). Define the
‘jump’ [F] in the value of this function across an opposite pair of cell faces as

[F]= F(P,;)~F(P,) (j=1,23). (4.27)

F(R,,r+1;)—-F(R,,1),
or F(r+1)—F(r), }

a1 +1;) — po(r) (4.26)

Equivalently, [F] = (4.28)

according as F is global or local.

Equations (4.24), (4.25) and (4.26) may therefore be expressed as the comparable local jump
conditions,

[l = 0, (4.294)
[ = = [rul, (4.295)
ool = Doy 1/ 0l (4.29¢)

13 Vol. 297. A
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which apply at each point r on opposite pairs of faces. Similarly, beginning with equation
(4.18), one may deduce comparable jump boundary conditions imposed upon V u,, across the
cell faces (cf. equations (4.30)-(4.32)). These jump boundary conditions play a role in the
present theory analogous to that of integration by parts in the Taylor-Aris theory (see the
discussion of this pointin § 11).

lattice
points
\/ o

Ficure 8. Equivalent points on opposite faces of a unit cell, expressed
in terms of the local position vector.

In summary, the sets of equations governing the lower-order fields g, for m = 0,1, and 2 are

as follows: /O = — V- (vptg) +D V2o +8(r — 1) 8(2), (4.300)
v Viy=0 on s, (4.300)

[16] = 0, [Vio] = 0; (4.30¢,d)

and op /ot =~V (op) +DV2y, (4.314q)
v-Vp, =0 on s, (4.310)

Il = —lrul, [Vl = —[V(ru)l; (4.31¢,d)

and Opy/0t = —V-(vp,) +DV2p,, (4.324a)
v:Vp, =0 on s, (4.320)

Tuol = [y ma/wod,  TVme] = [V (py 1/ 100)]- (4.32¢,d)

The above systems of differential equations and boundary conditions defining each of the
pn(r,8|r") (m=0,1,2,...) within a unit cell (re7y) can, in principle, be solved recursively,
beginning with z,. Each such system can be shown (Brenner & Gaydos 1977) to possess a unique
solution for p,,, which is independent of the particular shape selected for the unit cell (Brenner
1981).

Note that the normalization condition

f o d3r = 1, (4.33)
i
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which follows as a consequence of equations (4.10) and (4.19), is automatically satisfied (Brenner
& Gaydos 1977) as a consequence of the appearance of the unit source term in equation (4.30a).

Total moments

In addition to the local moments g,,, define the total moments,

M, (t]r') = f po(r, (7 d3r (m=0,1,2,...), (4.34)
7

of the probability distribution. In particular, from equation (4.33) it follows immediately that
My=1 (4.35)

for all ¢ > 0, independently of the value of r'.
Differentiate equation (4.34) with respect to ¢ for a fixed value of #' and employ equation
(4.21) in conjunction with the divergence theorem to successively obtain

dM,, [ Oy 45

@ =),

—_ f V- (0t —D V) d3r + 8,5 8(2)
Tt

= —§ ds-(vp,,—D Vau,)+8,,08(2)
ar.,+sp

== ds-(op,—DVp,)+8,0(t) (4.36)
[
with ds = vds a directed element of surface area parallel to the outer normal to 7,. The last
of equations (4.36) follows from the penultimate member of the sequence by using equations
(3.2) and (4.22).
The following lemmas hold for any function F, with [F] defined as in equation (4.27):

3
f ds-oF = 3 ds-o[F], (4.37)
o7, J=1Js8+j
3
and ds-F= Y ds-[F]. (4.38)
(03 J=1Js+j

These are readily proved by observing that at equivalent points P_; and P,; on opposite faces

of a unit cell,
o(P) = o(P,) (.39

as follows from equation (2.13) in conjunction with the spatial periodicity (3.5) of ». In addition,
because opposite cell faces are congruent,

ds(P_)) = —ds(P,,). (4.40)
Furthermore, from equation (2.5), ’ "

far.,("‘) =,§1 Us“(...) +L_}(...)] (4.41)

for any integrand. These identities suffice to prove the pair of lemmas.
13-2
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With the use of these lemmas, equation (4.36) may be expressed as

dM s 3
dM,, _ _ Zf ds-olu J+D X | ds [Va,]l+8,,8(0). (4.42)
d¢ =1 s i

=1J54j

Since the boundary conditions on the cell faces permit [p,,] and [V g,,] to be expressed entirely
in terms of the lower-order moments g, 1, fy_s, ---» Hf1, fos the integration scheme implicit in
equation (4.42) permits M,, to be calculated solely from knowledge of these lower-order local
moments. In particular, from equations (4.32¢, d), M, can be calculated from knowledge of p,
and y, alone. Explicit knowledge of g, is not required, despite the definition (4.34) (form = 2).

As an immediate application of equation (4.42) for the case m = 0 we find from equation
(4.30¢, d) that dM, /dt = &(¢). Integration of this yields M, = 1 for ¢ > 0,in accord with equation
(4.35). (An additive function of r’, which might otherwise have appeared upon integration,
vanishes in consequence of the implicit condition that M = 0 for ¢ < 0.)

5. ASYMPTOTIC LONG-TIME MOMENTS
Zero-order moments
As t—» oo, the asymptotic solution of the system of equations (4.30) is, as shown in appendix C,
Uo ~ 1/71+ Exp, (5.1)

where ‘Exp’ denotes terms in r, r’, and ¢ that vanish exponentially rapidly with ¢. The leading
term, 1/7y, of this solution represents the steady-state solution. By ‘long time’ is meant, more

precisely, Dt/ > 1, (5.2)

when expressed in non-dimensional form. Here, [ is a characteristic linear unit cell dimension.
The zero-order total moment A, is, of course, already given exactly by equation (4.35).

First-order moments

Introduction of equation (5.1) into equations (4.31¢, d) furnishes the boundary conditions

Li] = — [#l/re + Exp, (5.3a)
and [Vp,] ~ Exp, (5.3b)
to be satisfied by g, on the cell faces. With m = 1 in equation (4.42) it therefore follows that

dM, 1 3
—a—t— jad 7—'“‘§1 s+de 'v[[r]] + EXp
Use of the lemma (4.37) thereby yields
dM, 1
ST ar,.ds or + Exp,
or, upon integration, M, ~ (; ds ~vr) ¢+ const + Exp.
£J 070

In view of equation (4.34) (with m = 1), this suggests an asymptotic trial solution for g, (whose
validity may be confirmed a posterior:) of the form

1
m = [+ B(r)) + Exp, (5.4)
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wherein 7% = lf rds-v = const. ; (5.5)
TeJor,

The local function B(r) is the solution of the intracell boundary-value problem,

9% = —-V-(vB) +D V2B, (5.6a)
v'VB =0 ons, (5.60)
[B] =—I[r], [VB]=0, (5.6¢,d)

for r e q. Since v is presumably a known field, the constant §*, defined by equation (5.5), is to
be regarded as known. '

From equation (4.34), M, ~ 5*t+ B+ Exp, , (5.7)
where B- } B(r) d*r = const. (5.8)
tJ 7

Second-order moments

Equations (4.32¢, d) in conjunction with the asymptotic expansions of s, and p, impose the
following boundary conditions upon p,:

Il = — - (IF]&* +5*[r] ¢~ [BBI) + Exp, (5.90)
£

1
and} [Vu,] = - (I(VB) B] +[(VB) B']) + Exp. (5.90)
f
In principle, one may solve equations (4.324) and (4.325) for p, so as to satisfy these asymptotic
boundary conditions. However, subsequent calculations do not require explicit knowledge of u,,
but rather only of M, or, more precisely, of dM,/d¢. And this function can be obtained directly
from equations (4.42) and (5.9). By employing the jump lemmas (4.37) and (4.38) in their
converse sense, this procedure ultimately gives rise to the relation (Brenner 198r)
dM, 1

———_—{< ds-vr)z':*t—i—z')*t ds-or
dt Ty 7o 070

—f ds-wBB+D| ds-[(VB)B+(VB) B*];—E-Exp. (5.10)

070

From equation (5.5) the first two integrals are each 7,*. With use of boundary conditions (3.2)
and (5.60) on s, the last two surface integrals can be converted into comparable volume integrals
over 7; by application of the divergence theorem. In turn, the resulting volume integrals can be
simplified by application of the identities

V-[(VB) B+(VB) B'] = V}(BB), (5.11)
applicable to any vector field B, and
V-(vBB) = D[V3(BB) —2VB'"-VB] — (3* B+ Bt*), (5.12)

1 The superscript * denotes a post-transposition operator, which for triadics (third-rank tensors) is defined as
(abc)t = ach, in which a, b, ¢ are any vectors. Equivalently in Cartesian tensor notation Af;, = Au;.
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derived by premultiplying (5.64) by B and using equation (3.1). The transposition operator ¥
appearing above has its usual dyadic interpretation. In this manner, there is obtained

dM
2y 2v*v*t+v*B+Bv*+@f VB! VB d®r + Exp, (5.13)
b

dt Ty

with B the constant vector defined in equation (5.8).

6. MEAN- AND MEAN-SQUARE DISPLACEMENTS
Mean displacement vector

From a ‘macroscopic’ or Darcy-scale viewpoint, the mean displacement of the Brownian
particle at time ¢, from its initial position at time ¢ = 0, is

AR Ef (R,~R.) PdR
Vie

= 2 (Rn—'R'r’b) P(R'n_R'r’w r, tlf’) d3r, (6'1)

Tt n

with the use of equations (2.8) and (4.13). By ‘macroscopic’ is meant without regard to local
positions r and r’ within a unit cell (see equation (6.4)). From the definitions of g, and M,

the above is formally equivalent to —
AR = M,. (6.2)

In combination with equation (5.7) this yields the asymptotic result,
AR ~ 5*¢ (6.3)

as ¢~ 00. Thus, for sufficiently long times the mean displacement vector grows linearly with time.
Equation (6.2) may also be obtained asymptotically from a finer-grained viewpoint, by defining
the mean displacement vector as

AR = f (R—R') P(R,t|R") d°R, (6.4)
Vieo

in place of the first of equations (6.1). With the use of equation (2.10) thisis equivalent to

AR =| X (R,—R.)P(R,—R., 1, tlr')d3r +f

T n Tt

or AR = M, +J‘ (r—r") po(r, t|r") ddr.
¢

(r—r) X P(R,—R,, 1 t|r')d°r,

However, from equation (5.1),

f (r—r") p,d3r ~ lf (r—1r") d3r + Exp.
Tt Tt

Ty
The right-hand integral tends to a constant (of O(/)), independent of time. Since M, ultimately
grows linearly with time, this time-independent constant ultimately becomesnegligible compared
with #*z. Thus, we arrive at the same result as in equation (6.3).
From a Darcy-scale viewpoint the fluid-filled porous medium may be regarded as consisting
of two interpenetrating continua — a particulate continuum and an interstitial fluid continuum.
From the theory of Brownian motion (Brenner & Gaydos 1977) applied to the latter continuum,
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the mean velocity vector U* of the tracer through the interstitial fluid phase may be regarded
as defined by the stochastic relation

AR ~ U*t. (6.5)
Hence, from equation (6.2), U* =tli_)n:o —d—dl‘il (6.6)

Thus, it follows from equation (5.7), or more directly by comparing equation (6.5) with equation
(6.3), that —

U* = o*, (6.7)
wherein 7* is defined in equation (5.5).

It will be shown in § 7 that ¥* is the mean velocity of the fluid through the interstices. Thus,
the physical significance of equation (6.7) resides in demonstrating that, on the average, the
tracer moves at the same velocity as the fluid. In general, this would not be expected to be true
(Brenner & Gaydos 1977). Equality of average tracer and fluid velocities in the present case
arises from the fact the ‘point’ dimensions of the tracer corpuscle precludes the existence of
retarding ‘wall effects’, arising from hydrodynamic interaction between it and the granules
making up the porous bed. For the same reason, no ‘excluded volume’ (Brenner & Gaydos
1977) exists around each of the granules, from which the centre of the tracer particle is excluded
by virtue of its finite size. Moreover, no external body forces act upon the tracer particle, which
would cause it to move relative to the surrounding fluid. In effect, being free to sample all local
interstitial positions r € 7y within a unit cell (see § 7) with equal probability, the tracer molecule
behaves no differently than a fluid molecule. Were the tracer particle, for example, able to freely
diffuse through the bed granules, equation (6.7) would no longer obtain — even for tracer
particles of point dimensions.

Mean-* square’ displacement dyadic

In the same sense as equation (4.20), the ‘ macroscopic’ mean-square displacement is defined as

(AR —AR)? sf- (R,— R, —AR)2Pd*R, (6.8)

Vie

with AR defined as in the first of equations (6.1). With use of equations (4.2) and (2.8) this makes
(AR—AR)? = f d3r 3 (R, — R.) 2P — (AR)2 (6.9)
KES n

The right-hand integral is M,. After the use of equation (6.2), the above is equivalent to
(AR-AR)? = M,— M, M,, (6.10)

either exactly, or asymptotically, according as we employ R, — R, or R— R’, respectively, in
the definitions of the mean displacement and mean-square displacement. This choice is without
significance for sufficiently long times, which is the only condition of interest here.

Equations (6.10), (5.7), and (5.13) combine to show that the mean-square displacement
varies linearly with ¢ for sufficiently long times. This condition permits us to derive the dis-
persivity dyadic D* for the tracer corpuscle through the interstitial fluid since, from Einstein’s
generalized Brownian motion relation for continua (Brenner & Gaydos 1977),

(AR—AR)? ~ 2D*t. (6.11)
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That is, the dispersivity is defined as the proportionality constant between the asymptotic
mean-square displacement and twice the time. Comparison of equations (6.10) and (6.11)
thereby yields

D* = %%imd%(MZ_Ml M,). (6.12)

With the use of equations (5.13) and (5.7) this gives, explicitly,
D* =9f VB'-VBdr, (6.13)
Ts 5
Equivalently, in Cartesian tensor notation,
=% D
Dy -1 f BuaB o (6.14)

The properties of the dispersion dyadic, given by equation (6.13), are discussed at lengthin § 8.

7. DARCY-SCALE TRACER AND FLUID VELOCITIES
Equivalence of tracer and fluid mean velocities

According to the theory of Brownian movement, the constant vector U* appearing as the
proportionality coefficient in the asymptotic relation (6.5), and defined generally by equation
(6.6), is to be identified as the mean velocity of the tracer particle as it moves through the inter-
stices of the porous medium. Quite independently of this, the constant vector 3* defined by
equation (5.5) represents the mean velocity of the fluid through the interstices, as will be made
evident later on in this section. As discussed in the footnote pertaining to equation (6.7), and as
will be elaborated upon at further length in subsequent paragraphs, these two velocities are
equal in the present circumstances.

That these two velocities may be expected to be equal on a prior: grounds follows from the
fact that the (passive) tracer molecule is kinematically and dynamically indistinguishable from
a fluid molecule. Since ©* represents the mean velocity of the fluid molecules through the
interstices, then it must also represent the mean velocity of the tracer molecule. The logic behind
this conclusion is as follows (Brenner & Gaydos 1977):

Provided that the time from the commencement of the tracer experiment is sufficiently long
to satisfy the inequality (5.2), the tracer corpuscle will — as a result of its random Brownian
movement — sample every local position r (€7;) many times during the course of its interstitial
travel through the pores of the medium. That the tracer may move from cell to cell during the
course of sampling these local positions r is irrelevant, since for the same value of r, all positions
R = R, +r are geometrically indistinguishable, irrespective of the value of {n} (see the further
discussion of this point in § 11 in relation to the Taylor—Aris theory of dispersion in capillaries).
Because of the point dimensions of the corpuscle, and in the absence of any external forces
exerted upon it, every interstitial position r has equal a priori probability of being sampled by
the tracer — provided that the time is sufficiently long for the particle to ‘forget’ its initial starting
position r’. Identical ‘ergodic’ characteristics describe the motion of fluid molecules. Hence,
tracer and fluid mean velocities are expected to coincide in present circumstances, though not
in general (Brenner & Gaydos 1977).

Though the expression (5.5) for the Darcy-scale interstitial fluid velocity has been derived by
invoking Brownian motion theory for a passive tracer particle, the result is, of course, purely
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kinematical. In particular, as outlined in subsequent paragraphs, the same result can be derived
by purely kinematical flux arguments. That this same result derives independently from both
stochastic and deterministic arguments is very gratifying.

Seepage velocity kinematics

Define the seepage velocity vector as in equation (3.3). Since @ is a spatially periodic function,
for a prescribed cell shape the integral possesses the same value for all {n}. Itis therefore a constant
throughout the porous medium. Accordingly, the affix {n} may be deleted, and the integral

written as 1
9 =—| ovd® = const. (7.1)
Tod 7

Superficial examination suggests that the numerical value of this integral depends upon the
external shape 97, (bounding 7¢ externally) chosen for the unit cell - for which infinitely-many
choices exist for a specified array. Such a conclusion is physically unacceptable since a unit cell
possesses no physical reality. Only the particles themselves, and their mode of arrangement
possess objective (geometric) reality. Unit cells merely represent a convenient mental decom-
position of the space into repetitive subunits. If ¥ is to possess physical significance it is therefore
expedient to demonstrate that the integral (7.1) possesses the same (constant) numerical value
for every consistent choice of cell shape. This is readily proved; for if H (R) is any spatially-
periodic tensor-valued function with period R, the integral

f H(R)d%r =1, H, say, (7.2)
L3

possesses the same constant value for every curvilinear unit cell shape 07, consistent with the
lattice (Brenner 1981). Thus, the constant vector & defined by equation (7.1) is a macroscopic
invariant.

[That equation (7.2) is independent of the explicit choice made for the external cell boundary
07, may be proved by reference to the comparable two-dimensional situation depicted in figure
9. For the integral over the domain 7, bounded externally by &r,, write

Jo= Lol

Similarly, for the integral over the domain 7; bounded externally by d7,, write

o= LS

Since domain I is common to both regions it follows upon subtraction that

f ﬁd%‘—f Hd3r = | Hder— Hasr.
g T¢ 1I III

Let Ry; and Ryyp denote the position vectors of ‘equivalent’ points (cf. equation (2.13))
lying within interstitial fluid domains IT and III, respectively. The spatial periodicity of H
requires that H (Ryp) = H (Ryrr). Furthermore, since opposite pairs of cell faces are congruent
it follows that the integration domains IT and III are geometrically congruent. Hence,

f ﬁ(RII) d®r =f ﬁ(RIII) ddr,
I 111

whereupon f Hdsr =f Hdsr.
Consequently, H' = H. Q.E.D/] [ "

14 Vol. 297. A
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106 H. BRENNER

It remains yet to demonstrate that ¥ possesses the physical attributes normally ascribed to the
seepage velocity vector. Towards this end, use the general vector identity

v="V-(oR) - RV-v (7.3)

in conjunction with equation (3.1), the divergence theorem, and the boundary condition (3.2),
to express equation (7.1) as the surface integral

1

TO i
over the curvilinear cell boundaries, lying entirely in the fluid. The value of this integral is
independent of the choice of origin from which R is measured, since this property is an attribute
of equation (7.1) from which it derives. As such, it may be expressed entirely in terms of local

variables in the form

1
9=—| rds-o. (7.5)
TO 070

This can be proved by using equation (2.10) in conjunction with the facts that R, is a constant

within a unit cell, and
ds-v = 0. (7.6)

070

The latter is a consequence of equations (3.1) (in 7¢) and (3.2). (It also follows independently
from equations (2.5), (4.39), and (4.40).)

Let ;=1 ds-o (7.7)

denote the volumetric flow rate of fluid through face s; (j = 1, 2, 3) of any curvilinear unit cell.
Then the integral (7.4) defining ¥ possesses the fundamental property that
S;'ﬁ = q]- (7.8)
To prove the latter, use equation (2.5) to write equation (7.5) as
5= % | [ P dse)opn)+ [ rp s )-oe)]
0t 8i Si

in the notation of figures 6 and 8. Since (cf. equation (2.13))

r(Py

i) =
-1

= lw

3
it follows that By f ds o (7.9)
upon using equations (4.39) and (4.40). Dot multiply both sides of the preceding by s;, and

employ equation (2.12) to obtain
sj'z'):f ds-v. (7.10)
8

However, as in equation (7.7), the right-hand integral represents the volumetric flow rate g;
through face s;. Thereby, theorem (7.8) is proved. As in equation (2.14), the areal vector s;
represents the directed area of the curvilinear face.

Introduce the notational equivalences

s; =ds§;, ¢; =dg, (7.11a,b)

Jj
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reflecting the fact that whereas s; and g; are each finite in magnitude when viewed microscopic-
ally, they are to be regarded as only differential in magnitude when viewed from the macro-
scopic, Darcy-scale. The viewpoint implicit in this choice of notation is effectively tantamount
to regarding the microscopically discrete field of vectors R,, as a continuous field of macroscopic,
Darcy-scale position vectors R (Brenner 1981) — and hence of regarding the volume element 7,
of a unit cell as being equivalent to a differential volume element d*R at the Darcy scale. From
this same point of view, the ‘differential’ displacement vector d R at the Darcy scale is equivalent
to one of the basic lattice vectors ;. Because the infinite field of such lattice vectors (cf. equation
(2.3)) spans almost all possible directions in space, all orientations are accessible to these dR

region III

£)

@ RHI

Frn,,

Rll

vectors. T

region I

”
R
w)

%
YA

D
Y2

i

7
1
w

7

o0

g

&

Ficure 9. Two different, two-dimensional, curvilinear unit cells sharing the same lattice points. The four common
lattice points are (A, C, D, F). The two unit cells, whose interstitial fluid domains will be designated as
T, and 7¢, are those regions bounded externally by the closed curves o7, = ABCDEFA and 07, = AB'CDE’FA,
respectively. Regions II and III, shown shaded, represent the interstitial fluid domains bounded by the
closed curves ABCB’A and FEDE’F, respectively. Region I is the unshaded fluid domain in the centre,
bounded externally by the closed curve AB’‘CDEFA, and internally by the particle surface(s) s,. Thus,
7, = I®II and 7{ = ISIIIL.

Equations (7.8) and (7.11) combine to yield
As has been demonstrated, the vector @ defined in equation (7.1) is a Darcy-scale invariant,
independent of the shape assigned to the unit cell. On the other hand, as discussed in § 2, the
directed areas d§; = s;can be chosen, more or less arbitrarily, from an infinite field of orientations,
+ By employing multiple unit cells (Brenner 1981), all magnitudes for |dR| are essentially equally accessible.

It is easily shown (Brenner 1981) that all Darcy-scale physical parameters, such as ¥, o* and D* are independent
of whether the requisite integrals defining these quantities are taken over a single, or multiple, unit cell.

14-2
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108 H. BRENNER

according as which one of the infinitely many choices is made for the basic lattice vectors (1, I, I3)
describing the undeformed unit cell shape. Since equation (7.12) thus applies for an ‘arbitrary’
orientation of d§;, and since ¥ is independent of this ‘orientation’, the relation therefore rep-
resents the counterpart of the ordinary Eulierian definition of the fluid velocity vector v (Aris
1962, Batchelor 1967) for an incompressible fluid continuum, namely

ds, v = dg,. (7.13)

As in figure 10, ds, is an arbitrarily-oriented microscopic directed element of surface area,
parallel to the unit normal vector v to the areal element ds, and dg, is the volumetric flow rate
through that area, in the direction of v. The microscopic relation (7.13) is, in fact, the precursor
of equation (7.7).

area =ds

v(R)

Ficure 10. Flow through a differential element of surface area. The differential surface element is centred at the
point R. Here, ds, = vds, where ds = |ds,]| is the magnitude of the surface area. If v(R) is the local fluid
velocity vector at R, the volumetric flow rate dg, (an algebraically signed scalar) across the elemental surface
element in the direction in which o points is given by equation (7.19).

The macroscopic Eulerian relation (7.12), considered in conjunction with the ‘arbitrary’
nature of d§;, the physical interpretation of dg;, and the invariance of 3, provides unequivocal
confirmation of the interpretation of @, defined in equation (3.3) (or equation (7.1)), as being
the seepage velocity vector (Bear 1972, Beran 1968, Scheidegger 1963, Whitaker 1966, 1967,
1969, 1971, 1973). Additional confirmation of this fact derives by adopting a Lagrangian point
of view, as discussed in the penultimate subsection of the present section.

Mean interstitial fluid velocity -

The Darcy-scale interstitial fluid velocity vector #* is defined as (Bear 1972)

B* =7/e, (7.14)
where, as in equation (2.6), s the porosity, or fractional fluid-filled space, in the porous medium.
Since both ¥ and ¢ are macroscopic invariants, independent of the mode of partitioning the bed
into unit cells, the same property necessarily attached to *.

It follows from equations (2.6) and (7.5) that

1
o* =;—Jo rds-v, (7.15)
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confirming that the integral (5.5) (which would ordinarily have been represented by the symbol
U* — the mean interstitial tracer velocity) is indeed equal to the Darcy-scale interstitial fluid
velocity. Alternatively, with the use of equation (7.1) in place of equation (7.5),

~ 1
5% = —f o dor. (7.16)
Ty Tt
In other words, the mean interstitial fluid velocity is equal to volume average of the local fluid

velocity over the interstitial pore space.

Lagrangian kinematics

Independent confirmation of the physical interpretation of 5* as the mean interstitial velocity
derives by adopting a Lagrangian, rather than Eulerian, viewpoint.

In a homogeneous fluid continuum, one may follow over the course of time the trajectory,
R = R(R,,?), of a material point R,. The Lagrangian velocity v = v(R,,t) of this material
point is then (Aris 1962, Batchelor 1967)

v = dR/dt, (7.17)

wherein the material derivative d/d¢ is that for a mixed value of R,. As is well known (Aris
1962, Batchelor 1967), this velocity is identical to the Eulerian velocity v = v(R, ¢) (defined as
in equation (7.13), in terms of the flow through a fixed surface element) at the point R which
happens to be occupied by the material particle R, at time ¢. Here, we seek the analogue of
equation (7.17) for the mean velocity through the interstices of the porous medium. At the
same time we shall construct a proof that the Darcy-scale Lagrangian velocity thus defined is
identical with the Darcy-scale Eulerian velocity 3*, defined by equations (7.12) and (7.14).

Let 07,(0) denote the external boundary of the incompressible fluid mass originally contained
within any one curvilinear unit cell at time ¢ = 0. Imagine that this material is instantaneously
coloured with a non-diffusing dye, so as to be able to distinguish it from the remainder of the
interstitial fluid filling the rest of the infinite pore space. One may now study the motion of this
dyed domain with time as it is convected by the flowing fluid. In general, the external boundary
or,(¢) of this advected fluid region at any time ¢ itself qualifies as a unit cell in the usual sense
(figure 11).

Though the coloured fluid mass, whose temporal movement is being studied, is finite in extent
from a microscopic viewpoint, it is only ‘infinitesimal’ in extent when viewed at the Darcy-scale.
Accordingly, this interstitial fluid mass qualifies as a material ‘ point’ at the Darcy scale. Observe
that since each point on the external boundary 07,(f) moves with the local fluid velocity v
appropriate to that point, no mass crosses the boundary 0r,(¢) at any point. Hence, the fluid mass
in the advected dyed unit cell remains constant in time. (Because of the assumed incompressibility
of the fluid, the same is true of the volume 7,(¢) occupied by this fluid.) It is this constancy of
mass which, inter alia, qualifies the dyed region as a Darcy-scale material point.

Of special interest is the motion of the centre of mass — or, equivalently, the centre of volume,
R* = R*(t) — of the moving unit cell with time. Let 7,(¢) denote the interstitial domain occupied
by this fluid mass at time ¢. The instantaneous location of its centre of mass is then given by

R*(t) = —f R dsr, (7.18)
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where R denotes the position vector of a point in 74(¢), measured relative to the same fixed origin
asis R*. From a Lagrangian viewpoint the time derivative (cf. equation (7.17))

dR*/dt = B*, say, (7.19)

gives the Darcy-scale Lagrangian velocity of the macroscopic material ‘point’. Hence, by

definition of this vector 7%,
dJf1
o* = —| = R d3r|. .
? T I:Trfq(t) r] (7 20)

ﬂ E,(t) on face s,(t)

Lt
B;(t) on face s (t) o

&

Figure 11. Motion of the fluid contents of a two-dimensional unit cell with time. Initially, at time ¢ = 0, the
curvilinear unit cell is that containing the four lattice points L,(0) (i = 1, 2, 3, 4). After a period of time ¢,
the fluid contents of the advected unit cell - corresponding to the shaded region —is that containing the
four lattice points L;(t). The external shape 07,(¢) of the curvilinear unit cell at time ¢ will generally differ
from the external shape 97,(0) of the original cell from which it derives. That 97,(¢) fulfills the criteria
demanded of a unit cell may be demonstrated by using the local Lagrangian relation (7.17) in conjunction
with the spatial periodicity condition (3.4). This permits calculation of the trajectory R(R,,¢) of each
material point R,. In particular, it is readily proved that the vector {L;(0) -> L,(¢)} has the same value
for each 7. Moreover, if P ;(0) denote an equivalent pair of material points (in the sense of equation (2.13))
on the opposite pair of faces s,;(0), and if P_;(t) represent these same material points on the surfaces s (t),
then it can be shown that {P_;(0) - P_;(t)} = {P,;(0) - P,;(¢)}. Hence, the opposite pair of surfaces s_;(¢)
are congruent in the sense described in the text preceding equation (2.13). It is these facts that show 07,(¢)
to be a unit cell.

According to Reynolds’ transport theorem (Aris 1962, Batchelor 1967),

d o 3@
— d3r =f —d3r + ds-oy, 7.21

de Tf(t)‘ll Ti(t) ot 07o(t) +8p '/, ( )
for ¢ any tensor-valued field. In the present instance choose ¥ = 1, and employ equations (3.2)

and (7.6) to obtain
dry(¢) /dt = 0. (7.22)
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Hence, the interstitial volume occupied by the moving unit cell is a constant, 7, say, independent
of time. This is, of course, an immediate consequence of the constancy of the mass contained
in 74(¢), considered in conjunction with the incompressibility of the fluid.

Equation (7.20) may thus be written as

1[d
nk — | 3
¥ = - [dtfw)Rd r}. (7.23)

The term in square brackets may be evaluated by putting = R in Reynolds’ transport theorem

[7.21] to obtain
z’:*=1—{f a—Rd‘*r+‘<ﬁ ds-vR].
Ty | J 7 O orolD) +3p

However, 0R /0t = 0 since the partial time differentiation is to be performed with R held fixed.
Furthermore, equation (3.2) shows that the above surface integral vanishes on s,. Consequently,
o* = l—f ds-oR. (7.24)

TeJ or(t)

The preceding relation provides a prescription whereby the Darcy-scale Lagrangian velocity
?*, defined by equation (7.19), may be computed from knowledge of the local interstitial field
v. However, from equations (7.14), (7.4), and (2.6), the integral on the right-hand side of the
above also defines the Darcy-scale Eulerian velocity. Thereby, the formal equivalence of the
Lagrangian and Eulerian velocities is demonstrated.

Beginning with definition of the centre of volume of the entire unit cell,
= 1
R(t) =— R d®r, (7.25)
Tod 7o(t)

in place of equation (7.18), it can be similarly demonstrated that the Lagrangian vector o,

defined as _
7 = dR/d¢, (7.26)

is given by D= if ds-oR, (7.27)
ToJ oo(t)

and so is identical to the (Eulerian) seepage velocity vector (7.4). [The proof requires use of the
fact that the domain of integration in equation (7.25) may be written as 7,(¢) = 74(t) 7.
Furthermore, dr,/d¢ = 0, since 7, is independent of time.]

¢ Areal’ versus ‘volumetric’ porosity
Equation (2.12) may be written in Darcy-scale notation as
dﬁz'dgj = 3,”70, (7'28)

with 7, = d®R the Darcy-scale volume element. Analogously, one may define the mean inter-
stitial directed surface element d§¥ via the relation

dR;-d§F = &, (7.29)
Define the ‘areal’ porosity e * as the proportionality coefficient in the expression
p y prop y P

ds* = e*ds5,, (7.30)
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which serves to relate the interstitial and superficial areas. It follows from these three relations
that e* = 7¢/7,. Comparison of the latter with equation (2.6) shows that

e* =e. (7.31)

Hence the areal porosity is identical with the ‘volumetric’ porosity €. This equality also holds
for random porous media (Bear 1972, Whitaker 1966, 1967, 1969, 1971, 1973).

It is this circumstance that accounts for the appearance in equation (7.14) of the volumetric,
rather than areal, porosity, since the natural Eulerian definition of o * is

dg, = d§F-o*, (7.32)
whence it follows from equations (7.13) and (7.30) that
D* =’l-)/€*. (733)

8. PROPERTIES OF THE DISPERSION DYADIC
Symmetry and positive-definiteness
The dispersion dyadic, defined in equation (6.14), is symmetric, in the sense that
D} = D}, (8.1)
Moreover, D* = a positive-definite dyadic. (8.2)

To prove this, let y be any arbitrary, position-independent vector. It follows that

— D
X: D X; = ,;;f Yidir, (8.3)
Tf

where ¥ is the vector ¥, = x; B; ;. The integrand is non-negative definite at all points r, and
vanishes at all r for an arbitrary vector y if, and only if; B is constant for all r e 7. However, the
value B = constant is incompatible with the system of equations (5.6) defining B. Hence, ¥/}
cannot vanish for all re7;. In conjunction with the positive-definite nature of the scalars D and
7y, this shows that g-D*-y > 0, which proves equation (8.2).

Invariance of D* to external unit cell shape

Superficially, it would appear that the integral (6.13), and hence D* depends upon the
external shape 07, of the curvilinear unit cell bounding the fluid volume 7; for two reasons:
(i) the B field entering into the integrand appears to depend upon cell shape, since the basic
lattice vectors I; (j = 1, 2, 3) appear explicitly in boundary condition (5.6¢) (i.e., as in the equa-
tion immediately preceding equation (7.9), [r] = I;), and there exist infinitely many ways in
which these may be selected; (ii) the integration domain 7; appearing in equation (6.13) depends
upon cell shape.

For the same physical reasons discussed in connection with ¥ (and ©*) it behoves us, therefore,
to demonstrate that D* is independent of the external cell shape o7, and is therefore a macro-
scopic invariant. This will be done in two steps: (1) the field B(r) will be demonstrated to be
independent of cell shape; (ii) the value of the integral (6.13) will be shown to possess a similar
invariance with respect to explicit choice of cell shape.

Invariance of B-field to external unit cell shape

Equations (5.6), governing transport of the vector quantity B within the interstices of a unit
cell, correspond physically to a steady-state convective-diffusive transport process char-
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acterized by a position-independent volumetric source density —o*, zero normal diffusion flux
across the surfaces bounding 7+, and a difference I; (j = 1, 2, 3) in the density of B across the cell
faces. For a prescribed cell shape, it is shown in appendix A that the solution B of these equations
is uniquely defined to within an arbitrary additive constant vector. The latter is physically
irrelevant insofar as the integral (6.13) is concerned

The field B(r) is defined only within the interior of a unit cell It is possible, however, to
introduce a comparable continuous field B(R), defined globally on the entire porous medium,
such that it is identical to B(r) within any given cell, albeit to within an additive constant vector
In particular, consider the vector field B(R) (ReV;,), defined as the solution of the system of
equations

9% = —2v-VB+D V2B, (8.4a)
v*VB =0 ons, (8.45)

VB = spatially periodic, (8.4¢)
L asB-—1, (8.4d)
TO 070

with I the dyadic idemfactor. By spatial periodicity of VB is meant VB(R+R,) = VB(R).

Appearances to the contrary notwithstanding, the solution B(R) of this system of equations
is independent of the external cell shape 07,. This may be demonstrated by observing that the
curvilinear cell shape enters only via its appearance as the domain of integration in boundary
condition (8.4d). However, by application of the generalized divergence theorem to the fluid
volume 74, this integral can be written as

dsB =J VBd%‘-—J dsB.
T Sp

070

Since VB is a spatially periodic function, the theorem pertaining to equation (7.2) shows that
the integral over 7; is independent of external cell shape. The same is obviously true of the
integral over s, too. Hence, the value of the intergal in equation (8.44) is invariant to the parti-
cular choice made for dr,, whence the same property necessarily attaches to B(R).

That 9, rather than 97,{n} appears as the domain of integration in the boundary condition
(8.4d) is a reflection of the fact that this integral possesses the same value for every cell {n} in
the array as a consequence of the spatial-periodicity condition (8.4¢) (Brenner 1981). [This can
be proved, for example, by utilizing the decomposition theorem (8.7) in conjunction with the
fact that

dsB =0
(cf. equation (B7) of appendix B).] o

If u(R) is any global tensor-valued field possessing a spatially periodic gradient, then the

following fundamental ‘ decomposition’ theorem obtains (Brenner 1981):

u(R) = ii(R) +R-G, (8.5)
in which  is a spatially periodic function, and
G-1{ dsu (8.6)
TO 070

is a constant tensor (whose rank is one order higher than u), independent of the external shape
or, of the cell over which the surface integration is to be performed, and possessing the same value

15 Vol. 2g7. A
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for every cell {n} in the array. In view of equation (8.4¢) this theorem may be applied to the
function B(R), with the result that the latter can be expressed in the form

B(R) = B-R, (8.7)

since dsR=1 ‘ (8.8)

1o
Here, B is a spatially periodic function,
B(R,+R) = B(R). | (8.9)
As demonstrated in appendix B, the system of equations (8.4) defining the global field B(R)
possesses a solution which is unique to within an arbitrary additive constant vector, whose value
is physically irrelevant.
It is an immediate consequence of equations (8.7), (2.10), and of the spatial periodicity of
B, that
[B] = —[r]. (8.10)
Moreover, it follows from equation (8.4¢) that
[VB] = 0. (8.11)

The system of equations (8.4a, 5), (8.10), and (8.11) satisfied by the global function B(R)
is identical to the comparable system (5.6) satisfied by the local function B(r). Since each has
separately been shown to be unique to within an arbitrary additive constant, it necessarily
follows that

B(R) = B(r)+f(R,), (8.12)
with f a vector function, functionally dependent only upon R,,. Within any one cell (i.e. R e 7y{n})
this function is a constant. The value of this function may be obtained from equations (2.10)

and (8.7) as f(R,) = — R,,. Thus,
B(R) = B(r)—R,, (8.13)

in addition to B= B(r) +r + const. (8.14)

The arbitrary constant in the latter expression possesses the same numerical value for every
cell in the array. Equation (8.13) shows that the global and local B fields coincide within any
cell to within the local position-independent constant R, defining the particular cell within
which the comparison is being made.

Since B(R) is independent of the external cell shape 07,, and since the vector R, is also
independent of cell shape (depending only upon the locations of the lattice points characterizing
the array), this same property must also be an attribute of B(r) in consequence of equation
(8.13). *

In view of equation (8.13), the field B, required in the computation of the dispersivity integral
(6.13), may be regarded as being unambigously defined (to within an arbitrary constant vector)
by either of the systems of equations (5.6) or (8.4), whichever proves more convenient. Whereas
the boundary-value problem posed by equation (5.6) is purely local in nature, and need be
solved only within the interior of a single unit cell, the comparable boundary-value problem
posed by equation (8.4) is global in nature, and must be solved at every interstitial point in the
entire porous medium.
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Yet another alternative is to solve instead the system of global equations,

V-(oB) =D V2B = v—0*, (8.15a)
v-VB =0 on Sps (8.15b)
B = spatially periodic, (8.15¢)

derived either from the pair of equations (8.7) and (8.4), or from equations (5.6) and (8.14).
The solution B(R) of these equations is easily shown to be unique to within an arbitrary additive
constant, which possesses the same value throughout the array. In principle, this represents
perhaps the simplest system of B equations to solve, since no boundary conditions are imposed
on any external cell boundaries 0r,. Moreover, since B and v are both spatially periodic, each
may be expanded in Bloch functions (Brillouin 1953, Sachs 1963) possessing the translational
symmetry of the lattice.

The demonstrated invariance of B to cell shape shows that the integrand of equation (6.13),
from which D* is to be computed, displays this same invariance. Moreover, it is a consequence
of equation (8.4¢) that the integrand,

VB! VB = spatially periodic. (8.16)

Asin the general discussion pertaining to equation (7.2), it may therefore be concluded that the
Darcy-scale constant D * is an invariant, independent of the external shape selected for the unit
cell. Such a conclusion is, of course, gratifying in terms of the physical significance of the dis-
persivity dyadic.
Longitudinal dispersion

The dispersion dyadic (6.13) is composed of longitudinal dispersion, parallel to the direction
of the mean flow, and transverse or lateral dispersion, normal to the mean flow. The former may
be treated wholly independently of the latter by the following procedure. Let

A= B*[i¥, (8.17)
with 7* = |5%|, (8.18)

be a unit vector parallel to the direction of the Darcy-scale flow. Then the (scalar) longitudinal
dispersion coefficient is defined as

Dy, =Ai-D*-2. (8.19)

Hence, from equation (6.13), Dy, = ;_Q VB-VBd®r, (8.20)
£J 75

where B is the scalar field, B =A-B. (8.21)

In view of the non-negative nature of the integrand in equation (8.20) it follows that Dy, > 0,
in accord with expectations. '

The scalar B field required in the evaluation of equation (8.20) may be regarded as either
local or global in character. From a local viewpoint, B(r) may be regarded as defined by the
following system of equations, derived from equation (5.6) (see figure 8):

v-VB—-D V2B = —p*, (8.22a)
v:'VB =0 on s, (8.225)

15-2
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116 H. BRENNER
B(P,;) = B(P_;)—lcos0; (j=1,2,3), (8.22¢)
VB(P,) = VB(P.) (j=1,2,3), (8.224)

with ; = ||, and 6, the constant angle between the directions of /; and the mean flow.
These correspond physically to a conventional scalar convective-diffusion transport process
with a constant sink of volumetric strength #*. As such, B may be interpreted as a local ‘solute’

concentration. It follows from these equations that the net convective flow, — | ds-ovB, of
o7o

solute into the cell through the external boundaries 07, is exactly sufficient to account for the
total rate of solute annihilation 7*7¢ occurring within the interstitial fluid.

Despite the ease with which these equations lend themselves to physical interpretation,
integration is obviously a matter of great analytical difficulty owing to the formidable structure
of the local velocity field ». It is hoped to be able to report upon the outcome of such numerical
computations in a subsequent publication.

Pure molecular diffusion. The case of no convection

In the limiting case where * = 0 — and, hence, v = 0, everywhere — solute transport in the
interstices occurs solely by the mechanism of molecular diffusion. In such circumstances equation

(6.13) yields _ D
D} = = VB}-VB,d%r (8.23)
fJ7¢
for the Darcy-scale diffusivity dyadic. Here, B, is the solution of the system of equations (5.6),
or any of its equivalent global invariants, with * = » = 0. For definiteness we shall regard
B, as the global field derived from equations (8.4), namely

V:B,=0, v-VB,=0 on s, (8.244,b)

VB, = spatially periodic, (8.24¢)

and L[ asB,= -1 (8.244)
TO 070

Equation (8.28), derived by an unsteady-state tracer analysis, may also be obtained by a wholly
independent method (Brenner 1981), based upon a steady-state, macroscopically homogeneous
and unidirectional, analysis of the molecular diffusion process occurring in the interstices.

At steady state, the local solute flux vector j = j(R) at any point R within the interstices
satisfies the conservation equation, V.j=o. (8.25)

Additionally, the condition that the bed particles are impermeable to solute requires that
v'j=0 on s, (8.26)

These conditions are analogous to equations (3.1) and (3.2). As in the case of the velocity field,

it is therefore assumed that j — spatially periodic (8.27)

in the subsequent steady-state analysis.
Let j be the superficial Darcy-scale solute flux vector, defined as (cf. equations (7.8) and (7.7))

9 = Si'J, (8.28)

with 0 =J ds-j (8.29)
Sk
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the time rate of solute transport across face s, of a curvilinear unit cell. Hence, analogous to
equations (7.4) and (7.1), it follows that

;7 1 I N D

j= ~ ar.,Rds j= . Tf]d r. (8.30)
This vector is independent of {n}, and hence constant throughout the porous medium. (More-
over, its numerical value is independent of the explicit choice made for the external cell shape
07,.) The constancy of j or, equivalently, of the Darcy-scale interstitial solute flux vector (cf.
equation (7.14)), ) _ {
j*=jle==] ds-jR, (8.31)

TyJ or
corresponds physically to a macroscopically homogeneous, rectilinear, Darcy-scale solute
transport process.
With ¢ = ¢(R) the local volumetric solute concentration, it will be assumed that

j=-DVe, (8.32)

corresponding to Fick’s law of diffusion. For a prescribed value of j or j*, the system of equations
(8.25)—(8.27), (8.30) or (8.31), and (8.32) can be shown (Brenner 1981, Cone 1971) to yield a
unique solution for the field pair (4, ¢) at each point R €V}, though ¢ itselfis unique only to within
a physically irrelevant, arbitrary additive constant.

In combination, equations (8.27) and (8.32) reveal that V¢ is spatially periodic. Hence,
theorem (8.5)—(8.6) shows that ¢ possesses a decomposition of the form

¢=¢+R-G*, (8.33)

]
v &

with ¢ = ¢(R) a spatially periodic function, and

Gx=1{ asc (8.34)
Tod oro
a constant vector throughout the porous medium. In particular, it is independent of {n}, and
invariant to choice of external cell shape 0r,. Physically, this macroscopic vector plays the role
of the Darcy-scale solute concentration gradient, a fact that may be demonstrated as follows:
Define the Darcy-scale interstitial solute concentration at a ‘macroscopic point’ R,, as

1

i(R,) =— ¢ ddr. (8.35)
TeJ 76{n}

It is then a consequence of equation (8.33) that
Z(R,) = £(0)+ R, G*, (8.36)

wherein we have arbitrarily put R, = 0. In addition, define the Darcy-scale ‘gradient operator’
¥V such that, for I, any one of the infinite number of allowable basic lattice vectors,

f(R,+1)—f(R,) = L Vf. (8.37)

Here, f = f(R,) is any Darcy-scale tensor-valued function, dependent upon the position of the
‘macroscopic point’ R,,. (A special case of this relation is VR, = I, which serves as the Darcy-
scale analogue of the continuous-field relation VR = I.) The vector ‘operator’ V defined by
equation (8.37) is an invariant, independent of the choice of I, (Brenner 1981).
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[The relation between the Darcy-scale gradient operator V, defined by equation (8.37), and
the ordinary gradient operator V is most readily grasped by adopting the Darcy-scale notation,
R = R, and dR = I,. Consequently, equation (8.37) may be written as

df = dR-Vf,
wherein df =f(R+dR) —f(R)
is the difference in the value of the function f(R) between the two ‘adjacent’ macropoints, R
and R +dR. The suggestive notational equivalence, dR = I, hinges upon the fact ‘almost all’

orientations in space can be represented by the infinite set of orientations v, = 1,./|1,|.
The first of the displayed relations in this parenthetical remark is the obvious analogue of the

continuous field relation df = dR- Vf,

where f = f(R). This relation constitutes the definition of the gradient operator.]
It is an immediate consequence of equation (8.36) that

¢(R,+1,)—¢(R,) =1,-G*, (8.38)
Comparison of this with the generic relation (8.37) thereby yields
G* = V. (8.39)

This equation is to be understood as providing confirmation of the fact that the vector G*, defined
by equation (8.34), physically represents the Darcy-scale solute concentration gradient.

In applications, either the Darcy-scale flux 7* (cf. equation (8.31)) or the Darcy-scale con-
centration gradient G* (cf. equation (8.34)) may be regarded as the prescribed physical para-
meter. Specification of either, in conjunction with the system of equations (8.25)-(8.27) and
(8.32), leads to a unique solution (Brenner 1981, Cone 1971) for the field pair (j,¢) at each
point R. Hence, j* may be regarded as uniquely determined by G* and conversely. The former
case, wherein G* is specified and j* is subsequently calculated, represents the most commonly
encountered physical situation.

For a specified value of the Darcy-scale concentration gradient G*, define a vector ‘con-
centration’ field C = C(R) by the relation

¢c=C-G*. (8.40)

Since the direction and magnitude of G* may be arbitrarily specified, it readily follows from
equations (8.32), (8.25)—(8.27), and (8.34) that C'is the solution of the system of equations

V2C =0, v»-VC=0 on s, (8.41a,b)

VC = spatially periodic, (8.424)

and v L dsC = 1. : (8.42b)
TO 070

The (unique, to within an arbitrary constant vector) solution C of this system of equations
depends only upon the geometrical configuration of the porous medium. In particular, this
intrinsic field is independent of the physical parameters of the problem, namely G* (or j*) and
D. In terms of C, the local solute flux (8.32) is given by

j=-D(VC)-G*. (8.43)
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Equation (8.31) may be employed to calculate j* from the prescribed value of G*. Equations
(8.40) and (8.33) show that C possesses the decomposition

C=C+R, (8.44)

a result that also follows more directly from (8.424) and (8.425) by application of the theorem
(8.5)—(8.6). Here, Cisa spatially-periodic vector field. Elimination of R between equations
(8.31) and (8.44) yields .1 { .
j¥==| dsjC——| ds-jC. (8.45)
1 er, TyJ oro ‘
Sincej and € are each spatially periodic the same is true of their product. It thereby follows from
equation (4.38) (see also (B 7) of appendix B) that the last integral in equation (8.45) isidentically
zero. In addition, the boundary condition (8.26) permits the first integral in equation (8.45)
to be extended over s, too. Consequently,

jo %stpds-jc _ Tlr V(o) (8.46)
upon application of the divergence theorem. However, by vector identity,
V-(JC) = (V-j) C+ (V) (8.47)
valid for j and C any vector fields. Use of equations (8.25) and (8.44) thereby yields
j* = —D¥-G*, (8.48)
wherein Dx E-?f TiVC*-VCd3r. (8.49)

Since the intrinsic field C is a purely geometric field, independent of’ j* and G*, the same is
true of D¥*. Hence, equation (8.48) is to be interpreted as a linear Darcy-scale constitutive
equation, furnishing the flux j* for a prescribed value of G*. In particular, since G* has been
shown in equation (8.39) to be the Darcy-scale solute concentration gradient, equation (8.48)
may be regarded as the Darcy-scale form of Fick’s law. It constitutes the macroscopic analogue
of the microscopic relation (8.32).

The phenomenological dyadic D¥ appearing in equation (8.48), and defined in equation
(8.49), represents the Darcy-scale diffusion dyadic. It is easily shown, analogous to equations
(8.1) and (8.2), to be both positive-definite and symmetric.

Comparison of the system of equations (8.24) defining B, with the system (8.41)-(8.42)
defining C, considered in conjunction with the uniqueness (Brenner 1981, Cone 1971) of these
fields, show that

C(R) = — B,(R)+const (8.50)
for all ReV},. Equation (8.49) may therefore be written as
= D
D} = - VB}-VB,d3r. (8.51)
fJ7¢

This is identical to equation (8.23), which is the formula for the Darcy-scale diffusivity obtained
from the unsteady-state dispersion analysis in the limiting case of no convection. Thus, the
unsteady-state tracer analysis leads to precisely the same result as the steady-state flux /gradient
analysis. Agreement of these two very different modes of analysis is, of course, a very gratifying
conclusion.
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Similar steady-state modes of analysis (Brenner 1981, Cone 1971) have been used to extend
the calculations to include: (i) conduction through the particle interiors; (ii) surface diffusion;
(iii) anisotropic molecular conduction; (iv) first-order irreversible chemical reactions in the
pore space, etc.

9. RELATION OF BROWNIAN-MOTION THEORY TO
CONVENTIONAL DISPERSION PHENOMENA

The unique solution P of the differential equation (4.8) satisfying the boundary conditions
(4.7) and (4.3) may be regarded as furnishing the fundamental source solution for the local
solute concentration in ordinary convective-diffusion transport processes in spatially periodic
porous media. In particular, in a system containing N independently acting tracer (solute)
molecules, initially distributed throughout the interstitial fluid in an arbitrary manner, let ¢(R, £)
denote the local number density of solute molecules arising from some arbitrary initial solute
distribution ¢(R, 0), (R€V,,). It will be supposed that

¢(R,t)>0 as |R|—»>o0 (9.1)

sufficiently rapidly, such that the integral
f o(R,) R = N (9.2)
Vi

is convergent. As is easily proved, the number N of solute molecules in the interstitial fluid
remains constant in time since the bed granules are impervious to solute.

By the linear superposition principle, ¢(R, t) may be expressed in terms of the initial condition
¢(R, 0) and the fundamental solution P as

¢(R, 1) =fo ¢(R',0) P(R, {|R") SR". (9.3)

As is readily shown, the solute concentration derived from this relation satisfies the differential
equation (cf. equation (4.8)),

Oc/ot+v-Ve =D Vi, (9.4)

the boundary conditions (cf. equations (4.7) and (4.3)),
v:Ve=0 on s, (9.5)
and ¢—>0 as |R|-oo, (9.6)
the initial condition, ¢=¢(R,0) at t=0, (9.7)

and the normalization condition (9.2) (for all ¢ > 0).
From a cellular viewpoint, equation (9.3) may be written alternatively as

¢(R,,1,t) =3 ¢(R,,1r',0) P(R, — R, 1, t|r") d3r, (9.8)
n’ J 1e{n’}
with ¢ the solute concentration at a (local) point r in cell {n}. Define the average interstitial
solute concentration in cell {n} as (cf. equation (8.35))

1

iR, 1) = — f ¢(R,, 1,t) d&r. (9.9)
Tyd reln}
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From a global viewpoint, this function changes discontinuously as we pass from one cell to the
next.
In addition, define the moments,

M, () =7, S RIE(R,, 1) (m=0,1,2,..), (9.10)

of this discontinuous solute number density. In particular, it is readily shown that

M, =N, (9.11)
expressing the conservation of solute molecules. Furthermore, as t— oo (cf. equation (5.2)) it
can be shown (Brenner 1981) that

M, (t) ~ NM,,(¢|r"), (9.12)
independently of the value of #’. Here, M,, are the moments defined in equation (4.34).

For sufficiently long times after commencement of the experiment, the discontinuous solute
concentration field ¢(R,,, t) can be put into a ‘ one-to-one correspondence’ with a continuous field
Z(R, t) satisfying the differential equation

o¢/ot+o°- Vi = D*: VV;, (9.13)

in which #® and D® are, respectively, a constant vector and constant (symmetric) dyadic, to be
chosen so as to effect this ‘correspondence’. Here, R is a continuous field of position vectors,
defined throughout all of space, —o0 < |R| < 0, and V = 3/0R.

[The right-hand side of this expression would normally be written as V- (D®- V¢). Since D®
is constant, it may be written in the form (9.13) in which, however, D® is strictly only the sym-
metric portion of the dispersivity dyadic, in the event that the latter is not generally symmetric.]

The continuous concentration field will be chosen to satisfy the conditions

é(R,t)>0 as |R|—>oo, (9.14)
and € f ~ &(R,t)d3R = N, (9.15)
Ve

wherein N has the same value as before, and ¥,, denotes all of space — not just the interstitial
space V.. Equation (9.15) represents the initial condition imposed upon ¢, since it is readily
demonstrated from the solute conservation law (9.13) and the boundary condition (9.14), that
if equation (9.15) is satisfied at £ = 0 then it will automatically be satisfied for all ¢ > 0.

There are, of course, no boundary conditions to be imposed vis-a-vis the bed granules, which
possess no explicit existence at the level of description of the Darcy-scale continuum relations
defining ¢(R, t). Rather, their existence is implicit in the numerical values of the phenomenological
coefficients 7® and D®, as well as in the porosity factor multiplying equation (9.15).

Define the moments M2 of equation (9.13) as

R™¢(R,t)d*R (m=0,1,2,...). (9.16)

Ve

W50 =
It follows immediately from equation (9.15) that

M$=N (9.17)
forall ¢t > 0.

16 Vol. 297. A
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122 H. BRENNER
By physical interpretation, the quantity
dm(R,t) = ei(R,t) &R, (9.18)

represents the number of solute molecules present within the volume element d3R centred at
R, as given by the continuum theory. On the other hand, the discretized quantity

m(R,,t) = 7,(R,, 1) ' (9.19)

physically represents the number of solute molecules contained (in the fluid) within the super-
ficial volume 7,{n} of cell {n}. As discussed in § 7, the volumes d*R and 7, are to be identified as
equivalent Darcy-scale volume elements in the continuum and discrete descriptions, respectively,
of the transport processes. Accordingly, it is natural to define the ‘one-to-one correspondence’
of ¢(R, t) and é(R,,, {) by requiring that the respective moments,

o) = f  Redm(R, ), (9.20)
and M,(t) = S R7@(R,, 1), (9.21)

of the continuous and discrete solute number densities be asymptotically equal at sufficiently

long times for each m: — _
M2(t) ~ M, (1). (9.22)

(The index m should not be confused with m.)

It can be shown (Brenner 1981) that if these moments are asymptotically matched only in
the special cases m = 1 and 2, they will automatically be matched for all higher-order m. (In
view of equations (9.11) and (9.17) the moments are already matched for m = 0.) The momental
matching criterion (9.22) of ‘equivalence’ between é(R, t) and ¢(R,, ¢) ultimately furnishes the
formulas by means of which the macroscopic phenomenological coefficients ©® and D® appearing
in the continuum model (9.13) are to be derived from knowledge of the microscopic quantities
v, D, and the geometrical structure of the porous medium.

Comparison of equations (9.22) and (9.12) yields

M2~ NM,(1). (9.23)

In consequence of this it follows that formulas (6.6) and (6.12) may be expressed alternatively
as (cf. equation (6.7))

... d /My = . d (M® M®M®
* _ — (=L * 1 Bl Bulat et St 3 .24
¢ tli“;dt(N)’ b 2132dt(1v E ) (9-244,0)

On the other hand (analogous to the steps leading to equation (4.36)), differentiation of equa-
tion (9.16) with respect to ¢, and use of equation (9.13) for 9¢/0t, coupled with the divergence
theorem in R-space, and integration by parts in the light of equation (9.14), eventually gives
(Brenner 1981, Brenner & Gaydos 1977)

dMe/dt = 0, = M@ = N, (9.25)
and dMe/dt = M2 3°, (9.26)
in addition to dMg/dt = M#5® +5* M + (D® + D®") M. (9.27)
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These three equations combine to yield

d (M =, 1d /Mg MpM?
Y o _ — |72 1 1
dt(N) _2dt(N e ) (9.284,5)
the latter being based upon the assumed symmetry of D®.
Comparison of equations (9.28) and (9.24) thereby shows that
=g*, D®=D* (9.294,b)

This demonstrates that the mean solute or fluid velocity #®, and the dispersivity D®, required
in equation (9.13) to being about an equivalence between ¢(R, ¢) and ¢é(R,, ¢) are precisely those
quantities ©* and D* already derived from Brownian motion theory, and given explicitly by
equations (7.15) (or (7.16)) and (6.13), respectively.

In light of the relationship between Brownian motion and diffusion theory at the microscopic
level, such a conclusion appears perfectly reasonable (Brenner & Gaydos 1977), entirely in
accord with expectations.

(a)

1 I
h r (r9,2)
__].____ O z
i mean.
=] ve]ocn:y,

-~
—_—————
e ————

’—-———-
o ———

g 7 7
I
1
I
_J_ z
o———->| ‘
|
\
\ \

]

Ficure 12. (a) Poiseuille flow in a circular cylindrical capillary tube. (b) Decomposmon of the capillary tube
into ‘unit cells’ of length /. The distance z may be regarded as either the local variable, 0 < z < /, or the
global variable, —0 < z < oo.

10. REpucTioN TO TAYLOR-ARIS DISPERSION
IN A CAPILLARY TUBE

The complex chain of reasoning leading to equation (5.5) for *, and equation (6.13) for D *
suggests the desirability of illuminating and confirming these expressions by reference to a simple
example in which the resnlts are already known independently via an alternative method of
calculation. Accordingly, we shall derive from these two integrals the well-known Taylor—Aris
results for dispersion of a passive solute in a circular capillary tube. That these general three-
dimensional formulas may be applied to the problem of one-dimensional flow in a tube is con-
sistent with the discussion of consolidated porous media in §2 wherein it was pointed out that

16-2
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such capillary-type transport may be regarded as deriving in a limiting case from comparable
transport phenomena through the interstices of an unconsolidated spatially periodic array
(see figure 3).

Consider the Poiseuille flow of a Newtonian liquid at mean velocity ¥ through a circular
capillary of radius r, (figure 12), with (r, ¢, z) a system of circular cylindrical coordinates. This
problem may be brought within the realm of spatially periodic flows by imagining the capillary
to be decomposed into segments of length [ (figure 12). The Poiseuille velocity distribution
1s given by v = 20(r), (10.1)
with % a unit vector in the z-direction, and

o(r) = 2V [1—(r/ry)?]. (10.2)

Since this flow is locally rectilinear its ‘period’ [ is of arbitrary length. Hence, the parameter /
cannot (and does not) appear in the final expressions for the phenomenal coefficients 7% and
D*. The interior 77 of a “unit cell’ is defined by the finite circular cylindrical region,

0<r<rn, 0<¢d¢<2n, 0Kz (10.3)

whose boundaries are defined by the planes z = 0 and /, and by the cylinder wall 7 = r,.
Since 7y = nrdl, equation (7.16) becomes T* = Zi*, where

nr3l _

l 2n To —
g — f f f o(r)rdrdgdz = 7. (10.4)
2=0J ¢ r=0

Hence, T* = &V, (10.5)

as was to be expected, since I/ is the mean velocity of the Poiseuille flow.
In present circumstances we need only be concerned with spatial periodicity in the z-direction.
Consequently, the boundary condition (5.6¢) (with [r] = [;) adopts the form

B(z=1,7)—B(z=0,r) = — %l (10.6)
for all 0 < r < r,. Likewise, the boundary condition (5.64) becomes
OB/or=0 at r=r,, (10.7)

since the solid wall 7, is clearly to be identified with the solid surface s,, and v = # is a unit vector
in the radial direction.
The system of equations (5.6) defining the B field admits of the solution

B = %B(z,7), (10.8)
where the scalar field B is the solution of the boundary-value problem
V= —v(r)%+D[%Zg+;%(r%?)], (10.94)
0B/or=0 at r=r,, (10.95)
B(z=1r)-B(z=0,r) =—], (10.9¢)
0B/0zl, ., = 0B/0z],q (10.94)

+ For simplicity, we are here solving only the axisymmetric case, where B is independent of ¢. The relation
between this and the more general asymmetric case is discussed by Brenner & Gaydos (1977).
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In turn, these admit of a solution of the form (cf. equations (8.7) and (8.13))
B(z,r) = B(r)—z, (10.10)

with B(r) a function to be determined. This form automatically satisfies the boundary conditions
(10.9¢) and (10.94). The function B(r) is thus determined by the two remaining equations,

dB\ 7V —u(r)
rdr( dr) D (10.11)
and dB/dr =0 at r=r, (10.12)
The solution is readily found to be
B@r) = V’O[( —2(1 Tec (10.13)
(r D . . .

The appearance of the arbitrary constant of integration C'is consistent with the prior observation
that the B field is uniquely determined only to within an arbitrary additive constant vector.

[The field (Vr 2
B- 453l = ()]}
may be regarded as furnishing either the locally-defined field B(r) or the globally-defined field
B(R), respectively, according as z is restricted to the cellular range 0 < z < /, or the global
range —oo0 < z < co. This is consistent with equation (8.13), since in present circumstances,
R, = 2nl, where n is the cell number (n = 0, + 1, + 2, ...) in which the local field B(r) is defined.
In turn, this is consistent with equation (8.14), which in present circumstances is equivalent to

B(r) = B(r) — %z +const]
Equation (6.13) reduces in this case to
D* = £8D*, (10.14)

with the scalar (longitudinal) dispersivity given by

D=t L GE) 4 () o

From equations {10.10) and (10.13) this yields
2
p*=p4 778

©D’ (10.15)

in accord with the Taylor—Aris result (Aris 1956, Taylor 1953, 19545).
As was to be expected, these results for 5* and D* are independent of the arbitrary length unit
! defining the spatial ‘ period’.

11. DiscussioN
Formal analogies with Taylor dispersion

Despite the obvious physical differences between one-dimensional Taylor-Aris (T-A) dis-
persion in capillary tubes, and three-dimensional dispersion phenomena in spatially periodic
(s.p.) porous media, formal mathematical analogies exist (Brenner & Gaydos 1977). Perhaps
the major analogy is that existing between the (z,7) variables in T-A theory, and the respective
(R,,r) variables in s.p. theory. In particular, z and R,, (or {n}) constitute analogous global
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126 - H. BRENNER

variables, whereas r and r constitute analogous local variables. The mutual independence or
‘orthogonality’ (Horn 1971) of zand 7 in T—A theory is analogous to the independence of R,, and
rins.p. theory.

Success of the T-A theory hinges critically upon the fact that the local Poiseuille velocity
field v(r) (cf. equation (10.1)) is functionally dependent only upon the local variable 7. Analogous
to the success of the s.p. theory is the fact the local interstitial velocity vector v is functionally
dependent only upon the local variable r, as in equation (3.5).

Averages over the local variable 7 in T—A theory play roles analogous to comparable averages
of the local variable r in s.p. theory. Finally, we remark that in the course of forming local
moments x,,(r,¢|r’) in T-A theory (Brenner & Gaydos 1977) one integrates over the global
variable z™, and uses integration by parts to then recursively relate moments of different orders.
These steps are respectively analogous to forming the local moments p,,(r, ¢|r’) in the s.p. theory,
summing over the global variable R}, and using the technique of ‘summation by parts’ to
recursively relate the moments of different orders, as in equations (4.29).

The s.p. calculations of the present paper are but an example of the deep and abstract general-
ized analysis of classes of dispersion phenomena by Horn (1971).

Random porous media

The principal geometric characteristic of a ‘random’ porous medium is that it is identical
to itself under an infinitesimal translation dR in any direction, at least in a statistical sense. In
contrast, a spatially periodic porous medium is identical to itself only under the group of finite
translations I; (= dR) in specific directions. However, viewed from the Darcy-scale, the distance
|L;] is only ‘infinitesimal’ in magnitude. Moreover, because of the non-uniqueness of the I, the
infinite set of directions v; = L;/|l;| for which the porous medium maps into itself encompasses
virtually all possible directions in space.

Accordingly, Darcy-scale transport phenomena occurring within the interstices of these two
different classes of porous media are unlikely to manifest major differences. This strongly suggests
the potential applicability of specific results gleaned from the present spatially periodic analysis
to random media. The extent to which these hopes are borne out by experience remains to be
established by comparison of numerical values predicted from the theory with experimental
data. Comparison of experimental pressure drop data for real media with theoretical predictions
based upon the spatially-periodic model is encouraging in this regard (Brenner 1981).

Longitudinal and transverse dispersion
That the dispersivity is a second-rank tensor, rather than a scalar, accords with experience
(Bear 1969, 1972, de Jong 1958, 1972, Fried & Combarnous 1971, Gunn 1969,’Whitak‘er 1967,
1969, 1971, 1973) for real, geometrically isotropic porous media. Such media are transversely

‘isotropic with regard to the direction, 4 = 3/|3|, of the mean flow (cf equation (8.17)). Hence,

the dispersion dyadic is necessarily of the general form
D* =MDL+(I—M) Dy, v (11.1)

with Dy, the longitudinal or axial dispersivity, and Dy the transverse or radial dispersivity.
Transverse isotropy with respect tosecond-rank tensors would not be expected to prevail generally
for spatially-periodic media, although it will arise — for example — in the special case where the
mean flow is parallel to the ‘crystallographic axes’ of a simple cubic array (Brenner 1981).
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¢ Mechanical’ dispersion in the absence of molecular diffusion

Superficial examination of equation (8.20) suggests that no longitudinal dispersion will occur
in the limiting case where the molecular diffusivity tends to zero, since D occurs as the multiplier
of the integral. Such, however, is not the case owing to the singular nature of the B field in this
limit — as is clearly revealed by the Taylor-Aris example (cf. equation (10.13)). More generally,
equation (8.22a) reveals the singular nature of the limiting process D — 0. Discarding the
diffusive term would reduce the differential equation describing the transport of B from second-
to first-order. As is well known in related problems (Acrivos 1971, Acrivos & Goddard 1963,
Acrivos & Taylor 1962, Brenner 1970, Fedkiw & Newman 1977, Frankel & Acrivos 1968,
Hinch & Leal 1972, Leal & Hinch 1971, Sih & Newman 1967, Van Dyke 1975) this gives rise to
a singular perturbation problem (Van Dyke 1975), requiring rather special limit techniques for
its resolution.

In dimensionless terms, this limiting case corresponds to the situation where the Péclet
number, Pe = 0l/D, tends to infinity Here, ¥ = ||, and [ is a characteristic particle, pore, or
cell size. The Péclet number describes the global ratio of convective to diffusive solute transport.
Apart from the fact that the streamline configuration, and hence » /7, may change as the mean
velocity is changed (owing to the effects of inertia upon the viscous fluid motion), the limit
D — 0 corresponds to 7 — 0o in terms of the Péclet number criterion.

Experimental dispersion data (Bear 1972, Fried & Combarnous 1971) pertaining to situations
in which Pe— oo reveal that the longitudinal dispersivity tends to an non-zero limiting value
given by

Dy, = ks, (11.2)

atleastin low Reynolds number, Darcy-flow, situations, where the laminar streamline configura-
tion around the individual particles is independent of the mean velocity of flow. Here, % is a
non-dimensional constant of order unity. The dispersion occurring in this limiting case is termed
‘mechanical’ dispersion in the literature (Bear 1972, Fried & Combarnous 1971), since equation
(11.2) depends upon the purely hydromechanical factor #. In particular, the molecular diffusivity
does not enter explicitly into the numerical value of Dy,

The formula (11.2) has been rationalized (Bear 1972) by assuming that since D does not
appear explicitly in the limiting formula for Dy, it cannot enter implicitly into the dispersion
mechanism either. Thus, the dispersion mechanism leading to equation (11.2) is presumed to
be purely hydromechanical in origin. Since dispersion is, by definition, regarded phenomeno-
logically as a stochastic process, the source of such ‘mechanical’ dispersion has been attributed
exclusively to the ‘random’ geometry of the particle arrangement, and hence to the random
interstitial pore space too — with molecular diffusion given no role to play in the stochastic
process. Were this general argument correct, in the limit D — 0 no dispersion could occur in
perfectly ordered arrays of the type considered herein, since such media are wholly lacking in
stochastic features (and the flow is locally laminar). However, singular perturbation thedry
applied to the system of equations (8.22) suggests that equation (8.20) will almost certainly
yield a nonzero value for Dy, in the limit where Pe — co.

Thus, in our view, ‘mechanical’ dispersion is a misnomer. The phenomenon appears con-
ceptually unrelated to the possibly stochastic geometrical structure of the porous medium; nor
is it a purely hydromechanical phenomenon. Molecular diffusivity, no matter how small, must
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be accounted for in its calculation, despite the fact that it does not appear explicitly in the
ultimate expression (11.2) for the resulting dispersivity.

The highly singular nature of the limiting process D — 0is, perhaps, best understood by analogy

to the comparable, purely hydrodynamic, problem of the drag force experienced by an isolated

sphere immersed in a streaming flow, in the limit where the kinematic viscosity v — 0.

10?
] I I I I I I T
I ! l l I |
2R b
=5 N .
59 10 — =&
2 8= \ ]
A4 EX |
Qo o Q |
£ & I ! S 40 | _
T35 10° ! ' N I |
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®°g LA l ! S ! | |
KRS O A o boom ) a ! 11 AU
10" 0 N A N T S DO N 107 | | | L L
1072 10° 102 10* 10° 107 10" 10° 10°

Péclet number, P¢ = vl/D

Reynolds number, Re = Ud/v

F1GURE 13 (2). Summary of experimental data on the longitudinal dispersion coefficient in natural porous media
(Bear 1972, Fried & Combarnous 1971). The physical significance of the different régimes is as follows:
I, molecular diffusion dominant; I1, superposition of molecular diffusion and mechanical dispersion effects;
ITI, mechanical dispersion dominant; IV, dispersion outside the Darcy-flow domain. Fluid inertial effects
and/or turbulence cannot be neglected. In general, this régime cannot strictly be represented by a single
curve; rather, a series of curves must obtain, one for each value of the Schmidt number v/D. (b) Summary
of experimental data on the drag coefficient against Reynolds number for an isolated sphere in a streaming
flow (Zenz & Othmer 1960). The physical significance of the different régimes is as follows: I, Stokes law
region, viscous effects dominant; I1, superposition of viscous and inertial (convective) effects; IIT, Newton’s
law region, inertial effects dominant (laminar boundary layer); IV, turbulent boundary layer.

Figure 134, taken from the graphical data compilations of Fried & Combarnous (1971) and
Bear (1972), is a dimensionless plot of the experimental longitudinal dispersivity coefficient,
Cy, = Dy, /il, against the Péclet number. Essentially four different ‘régimes’ are found. This plot
bears a remarkable resemblance to figure 136 (Zenz & Othmer 1960), which is a dimensionless
plot of the drag coefficient Cp, = F/(3pU?) (ind?) against the Reynolds number Re = Ud/v,
(F is drag force, p fluid density, U stream velocity, and d sphere diameter) for the force on an
isolated sphere. Of special interest is a comparison of the ‘purely mechanical’ dispersion régime
III in figure 13a — characterized by Cj, = k ~ constant, with the ‘Newton’s law’ régime III in
figure 135 — characterized by Cj, & constant. Each corresponds to the dominance of convective
effects over molecular effects.

The main characteristic of the Newton’s law region lies in the fact that the force on the sphere
is explicitly independent of the kinematic viscosity v. Despite this independence, it is well known
from boundary-layer theory that the kinematic viscosity contributes importantly to the mech-
anism whereby the drag force is created. In particular, putting » = 0 in the Navier-Stokes
equations, in an attempt to derive the curve of Cy, against Re, which characterizes region ITI,
is known to be theoreticaly incorrect owing to the singular nature of the limiting process v — 0
(Van Dyke 1975).

For precisely analogous reasons, one cannot set D = 0 in equation (8.224) (nor any of its
global variants), and hope to reproduce the Cy, against Pe curve characterizing region III of
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the dispersion plot. Rather, the singular nature of the limiting process D — 0 must be accounted
for (cf. the discussions of Saffman (1959 5, 1960) and Beran (1968) for this limiting case).

This analogy makes it highly unlikely that ‘mechanical’ dispersion is a purely hydromechanical
phenomenon. If confirmed by more detailed considerations, random-walk models of mechanical
dispersion would thereby be shown to be devoid of physical content.

Similar remarks apply to the transverse dispersivity in the limit as D 0. Indeed, a curve
analogous to figure 134 is presented by Fried & Combarnous (1971) for Cy, = Dy /ol against Pe,
showing the same four regions.

AprPENDIX A. UNIQUENESS OF THE LOCAL FIELD B(r)

Let B'(r) and B"(r) each be solutions of the system of equations (5.6). The difference,

Bo(r) = B'(r) - B(r), (A1)
then satisfies the following system of komogeneous equations:
V- (vB°) —D V2B = 0, (A 2)
v:VB°=0 on s, (A 3)
[B°]=0, [VB]=0. (A 4a,b)

Dot multiply the first of these by B°, multiply by a volume element d3r, integrate over the
interstitial volume 7¢, and employ the divergence theorem to obtain

D[ vBuvBrdr——5[  dso(B)4D[ ds(VB)-By (A9
%

970+8p 07o+8p
with (B°)2 = B°- B°. Boundary conditions (3.2) and (A 3) show that the above surface integrals
vanish on s;,. Furthermore, it is a consequence of (A 4) that [(B°)2?] = 0 and [(VB°)- B°] = 0.
Hence, lemmas (4.37) and (4.38) may be invoked to demonstrate that the surface integrals
vanish over 07, too. Consequently,

VBe: VBotd3r = 0. (A 6)
Tf
The integrand is a non-negative definite form, from which it may be concluded that
Bo(r) = const (AT)
for all rer;. Hence, equation (A 1) shows that the solution B(r) of the system of equations
(5.6) is unique to within an arbitrary additive constant. Q.E.D.

AprPENDIX B. UNIQUENESS OF THE GLOBAL FIELD B(R)

Let B'(R) and B"(R) each represent solutions of the system of equations (8.4). The difference,

B°(R) = B'(R) — B"(R), (B1)
then satisfies the following system of homogeneous equations:
V:(vB°) —D V2B° = 0, (B 2)
v:VB°=0 on s, (B3)
VB = spatially periodic, (B 4)
dsB° = 0. (B 5)

070

17 . Vol. 297. A
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Equation (B 4) in conjunction with theorem (8.5)—(8.6) shows that
B°(R) = spatially periodic (B6)
upon the use of equation (B 5).

Dot multiply equation (B 2) by B°(R). Proceeding as in the derivation of equation (A 5)
from equation (A 2), we eventually obtain a relation identical to (A 5), but with B°(r) replaced
by B°(R). Equations (3.2) and (B 3) then show, as before, that the surface integrals vanish over
sp- Now, if H(R) is any spatially periodic tensor-valued field, it follows that [H] = 0, with the
bracketed function defined generically by equation (4.27). Hence, lemma (4.38), which remains
valid if the dot-product symbol is removed from both sides of the equality, shows that

dsH = 0. (B7)

[
Inasmuch as », B°(R) and VB°(R) are each spatially periodic fields, the same is true of any
combinations of their products. Hence, theorem (B 7) shows that the surface integrals over o7,
in equation (A 5) vanish.

Equation (A 6) therefore applies with B°(R) appearing in place of B°(r). Hence, analogous
to equation (A 7), B°(R) = const (BS)
for all ReV¥,,. In turn, from equation (B 1), this demonstrates the uniqueness of B(R) to within
an arbitrary additive constant. Q.E.D.

ApPENDIX C. DERIVATION OF EQUATION (5.1)

Subject to a posteriori verification, assume an eigenfunction expansion of the system of equations
(4.30) having the form

’ 1 Z ’
- (s tlr) =T—f+’§1yk(f|f)exp (A1) (C1)
The eigenfunctions y, and eigenvalues A, are determined by the system of equations
Ay = — V- (vy) + D V?yy, (C 24)
v-Vy,=0 on s, (C 2b)
[[yk]] =0, [[Vyk]] =0, (C' 2¢, d)
fork =1, 2,3, ... In addition, it is required that
® 1
2 Y (rlr) = 8(r—r)—— (C2¢)
k=1 Ty

so as to satisfy the initial condition p,(r, 0|r') = 8(r —r’) (cf. equation (C 1) with ¢ = 0). The
latter initial condition is formally used in place of the equivalent instantaneous source term
o(r—1r") 8(t) appearing explicitly in equation (4.304). Since, from the properties of the delta

functi
HReHon, f S(r—r)ddr = 1,
Tf

the condition (C 2¢) assures that equation (4.33) is satisfied for all time.
Multiply equation (C 24) by y, and integrate over the interstitial fluid volume 7; within a
unit cell to obtain, with use of some obvious identities,

Akf y,%d3r=—13€ ds-vy,%+D5€ ds-(Vy) 1 =D [ VyVuedir,  (C3)
T 2 079-1-8p 0Tat8p T
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upon application of the divergence theorem. Equations (3.2) and (C 25) show that the two
surface integrals on the right-hand side vanish on s,. Furthermore, lemmas (4.37) and (4.38),
when considered in conjunction with the facts that [y2] = 0 and [y, Vy,] = 0 — which follow as a
consequence of equations (G 2¢, d) — show that the surface integrals in equation (C 3) vanish over
or, too. Consequently,

A, =—D f (Vy,)2dor / f y2dsr. (C 4)
7t s )

Except possibly for the trivial case y;, = const, for which A, = 0, the non-negative nature of these
integrands shows that A; < 0. This fact confirms the error estimate in equation (5.1).

The physical interpretation of the asymptotic solution (5.1) is as follows: since uq(r, t|r’)
satisfies the convective-diffusion equation (4.304), it may be interpreted as the instantaneous
local concentration of the ‘zeroth moment solute’ (within the domain rer,), resulting from a
unit input of this solute at the position r = r’ at ¢ = 0. The boundary conditions (4.305—d)
ensure that no net flow of this solute occurs across the boundaries, s, and 07, of the system. Hence,
the unit amount of solute initially charged remains permanently within the interstitial region
7¢ for all time. By the mechanism of molecular diffusion, this solute ultimately becomes uniformly
distributed throughout the system. Indeed, as may be formally verified, the steady-state solution,
W = 1/74,1s an exact solution of the system of equations (4.30) and (4.33).

This manuscript is dedicated to the late Professor F. J. M. Horn. He shared in the inception
of this research during his sabbatical leave at Garnegie—Mellon University during the academic
year 1969-70, where I was in residence in the Chemical Engineering Department. To him goes
the credit for recognizing that spatially-periodic porous media provided a proper ‘orthogonal
space’, (R,, 1), such as to constitute a special example of his profound general analysis (Horn
1971) of dispersion phenomena in such spaces. The ensuing dispersion analysis, albeit in a
non-invariant, cell-shape dependent form, forms a portion of the doctoral dissertation (Cone
1971) of Dr E. J. Cone, carried out under my supervision.

The research contained herein was supported by the National Science Foundation under
grant numbers NSF GK-12583 and 34855.
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